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Abstract
Laboratory	 techniques	 for	 high-	throughput	 sequencing	have	enhanced	our	 ability	 to	
generate	DNA	sequence	data	from	millions	of	natural	history	specimens	collected	prior	
to	the	molecular	era,	but	 remain	poorly	tested	at	shallower	evolutionary	time	scales.	
Hybridization	 capture	 using	 restriction	 site-	associated	DNA	 probes	 (hyRAD)	 is	 a	 re-
cently	developed	method	for	population	genomics	with	museum	specimens.	The	hyRAD	
method	employs	fragments	produced	in	a	restriction	site-	associated	double	digestion	as	
the	basis	for	probes	that	capture	orthologous	loci	in	samples	of	interest.	While	promis-
ing	in	that	it	does	not	require	a	reference	genome,	hyRAD	has	yet	to	be	applied	across	
study	systems	in	 independent	 laboratories.	Here,	we	provide	an	 independent	assess-
ment	of	the	effectiveness	of	hyRAD	on	both	fresh	avian	tissue	and	dried	tissue	from	
museum	specimens	up	to	140	years	old	and	investigate	how	variable	quantities	of	input	
DNA	affect	sequencing,	assembly,	and	population	genetic	inference.	We	present	a	mod-
ified	bench	protocol	and	bioinformatics	pipeline,	including	three	steps	for	detection	and	
removal	of	microbial	and	mitochondrial	DNA	contaminants.	We	confirm	that	hyRAD	is	
an	effective	 tool	 for	sampling	 thousands	of	orthologous	SNPs	 from	historic	museum	
specimens	to	describe	phylogeographic	patterns.	We	find	that	modern	DNA	performs	
significantly	better	than	historical	DNA	better	during	sequencing	but	that	assembly	per-
formance	 is	 largely	equivalent.	We	also	find	that	the	quantity	of	 input	DNA	predicts	
%GC	content	of	 assembled	contiguous	 sequences,	 suggesting	PCR	bias.	We	caution	
against	sampling	schemes	that	include	taxonomic	or	geographic	autocorrelation	across	
modern	and	historic	samples.
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1  | INTRODUCTION

Over	the	past	three	decades,	novel	laboratory	techniques	have	enhanced	
our	ability	to	generate	DNA	sequence	data	from	millions	of	natural	his-
tory	specimens	collected	prior	to	the	molecular	era	(Payne	&	Sorenson,	
2002).	The	advent	of	ancient	DNA	methods	has	allowed	researchers	to	
obtain	both	nuclear	and	mitochondrial	DNA	(mtDNA)	sequences	from	
extinct	taxa	(Cooper	et	al.,	1992;	Fleischer	et	al.,	2006),	explore	changes	

in	genetic	diversity	and	population	genetic	structure	over	time	(Habel,	
Husemann,	Finger,	Danley,	&	Zachos,	2014;	Weber,	Stewart,	Garza,	&	
Lehman,	2000),	 incorporate	 threatened	or	difficult-	to-	collect	 taxa	 into	
population	genetic	or	phylogenetic	studies	(Guschanski	et	al.,	2013;	Linck,	
Schaack,	&	Dumbacher,	2016),	and	take	advantage	of	extant	biological	
collections	to	boost	sample	size	and	inferential	power	(Linck,	Schaack,	&	
Dumbacher,	2016;	Wójcik,	Kawałko,	Marková,	Searle,	&	Kotlík,	2010).	
Now,	high-	throughput	sequencing	has	dramatically	 increased	both	the	
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overall	efficiency	of	data	collection	and	the	total	amount	of	sequence	
data	 that	 it	 is	 possible	 to	 collect	 from	museum	 specimens	 (Hofreiter	
et	al.,	2015;	Rizzi,	Lari,	Gigli,	De	Bellis,	&	Caramelli,	2012)	by	overcom-
ing	scalability	hurdles	intrinsic	to	traditional	Sanger	sequencing	methods	
(Soltis	&	Soltis,	1993;	Wandeler,	Hoeck,	&	Keller,	2007).

Although	high-	throughput	sequencing	has	already	proved	widely	
useful	for	incorporating	museum	specimens	into	phylogenomic	studies	
(Besnard	et	al.,	2015;	Burbano	et	al.,	2010;	McCormack	et	al.,	2012),	
its	application	for	collecting	genome-	wide	markers	at	the	population	
level	 has	 lagged	 behind	 its	 use	 for	 addressing	 questions	 at	 deeper	
evolutionary	 time	 scales	 due	 to	 limitations	 in	 the	 most	 commonly	
employed	 library	 preparation	 methods	 for	 reduced-	representation	
Illumina	 sequencing	 (Suchan	et	al.,	 2016).	The	 limitations	of	historic	
museum	samples	include	their	high	degree	of	fragmentation	and	low	
concentration	of	long	DNA	fragments,	which	reduces	the	amount	of	
flanking	sequence	that	can	be	captured	using	ultraconserved	element	
probes	(Faircloth	et	al.,	2012)	and	lowers	the	likelihood	that	multiple	
restriction	digest	recognition	sequences	are	retained	in	a	given	DNA	
fragment	(Baird	et	al.,	2008;	Peterson,	Weber,	Kay,	Fisher,	&	Hoekstra,	
2012).	Only	 in	the	past	few	years	have	 library	preparation	protocols	
suitable	 for	 population	 genomics	 become	 available	 (Bi	 et	al.,	 2013;	
Jones	&	Good,	2016;	McCormack,	Tsai,	&	Faircloth,	2016),	but	their	re-
cent	proliferation	has	meant	that	few	have	yet	to	be	applied	to	multiple	
study	systems	in	independent	laboratories	(McCormack	et	al.,	2016).	

As	a	result,	our	understanding	of	the	efficacy	and	biases	of	different	
approaches	to	reduced-	representation	genome	sequencing	from	de-
graded	DNA	remains	incomplete	relative	to	either	Sanger	sequencing	
(Soltis	&	Soltis,	1993;	Wandeler	et	al.,	2007)	or	high-	coverage,	single-	
sample	whole	genome	sequencing	(Poinar	et	al.,	2006).

One	 promising	 but	 under-	tested	 approach	 to	 museum	 genomics	
suitable	for	population-	level	studies	is	hybridization	capture	of	restriction	
site-	associated	DNA	(RAD)	probes	(hyRAD)	(Suchan	et	al.,	2016).	Briefly	
summarized,	the	hyRAD	method	uses	fragments	produced	by	a	double	
digest	RAD	(ddRAD)	protocol	(Peterson	et	al.,	2012;	Suchan	et	al.,	2016)	
as	the	basis	for	biotinylated	probes	that	capture	orthologous	loci	in	other	
samples,	allowing	them	to	be	enriched	and	indexed	for	pooled	Illumina	
sequencing.	Although	the	method	requires	a	high	molecular	weight	DNA	
sample	to	produce	the	probe	set,	hyRAD	offers	advantages	over	other	
targeted	 capture	methods	 in	 requiring	 no	 prior	 knowledge	 of	 the	 or-
ganism’s	genome,	such	as	transcriptome	data	or	pre-	existing	sequences	
for	probe	design	(Bi	et	al.,	2013;	McCormack	et	al.,	2016).	Additionally,	
because	hyRAD	relies	on	hybridization	capture	of	orthologous	regions	
across	 samples	 rather	 than	 retained	 restriction-	site	 recognition	 se-
quences,	 the	method	mitigates	 the	concerns	of	allelic	dropout	due	 to	
polymorphisms	at	restriction	sites	with	increasing	phylogenetic	distance	
intrinsic	to	other	RAD-	based	protocols	(Gautier	et	al.,	2013).

In	their	original	paper,	Suchan	et	al.	(2016)	validated	their	method	
by	applying	it	to	both	fresh	tissue	and	museum	specimens	of	a	butterfly	

TABLE  1 Sampling	information

Specimen Subspecies
Sample 
type Locality

Date 
collected

Age of 
sample 
(years)

Total number 
 of reads

Number of 
cleaned 
reads

% 
Duplicate 
reads

Average 
coverage 
(X) Specificity

Fold 
enrichment Sensitivity Loci

Average 
locus 
length (nt)

Number 
of contigs 
over 1KB

Initial 
concentration 
(ng/μl)

GC content of 
on- target 
contigs

KU:Birds:5215 pseuestes Tissue Ivimka	Camp,	Gulf	Province,	Papua	New	Guinea 2003 13 18,713,496 2,915,214 68.1 12.74 16.87 16.58 84.93 22,568 518 489 71.6 44.22

KU:Birds:5464 pseuestes Tissue Sapoa	Camp,	Gulf	Province,	Papua	New	Guinea 2003 13 17,246,396 2,512,928 68.2 11.2 16.65 16.36 79.43 19,880 499 340 51.8 44.69

KU:Birds:6927 meeki Tissue Mt.	Suckling,	Oro	Province,	Papua	New	Guinea 2011 5 25,892,086 3,103,912 73.2 14.46 17.37 17.07 85.02 23,162 510 494 37 44.53

KU:Birds:7131 pseuestes Tissue Dark	End	Camp,	Gulf	Province,	Papua	New	Guinea 2002 14 6,819,041 1,154,541 60.4 5.87 17.29 16.99 65.44 12,725 434 157 31.8 45.01

CAS:ORN:626 meeki Blood Varirata	National	Park,	Central	Province,	Papua	New	
Guinea

2011 5 15,548,547 1,945,868 70.2 9.38 17.06 16.77 77.25 18,519 488 262 43 44.62

KU:Birds:9145 torotoro Tissue Gahom	Camp,	East	Sepik	Province,	PNG 2003 13 18,049,058 2,309,716 70.2 10.75 16.91 16.62 80.15 20,057 452 312 10.1 44.35

AMNH:Birds:637445 torotoro Toe	pad Wasior,	West	Papua	Province,	Indonesia 1928 88 13,112,780 48,257 78.2 2.59 11.16 10.97 33.52 849 449 57 3.66 46.03

AMNH:Birds:329542 ochracea Toe	pad Sewa	Bay,	Normanby	Island,	Papua	New	Guinea 1934 82 15,875,059 40,402 82.2 1.8 8.9 8.75 29.19 388 465 24 3.84 47.62

AMNH:Birds:637464 tentelare Toe	pad Wannambai,	Maluku	Province,	Indonesia 1896 120 21,058,924 139,248 59.9 9.2 11.07 10.88 50.24 3,197 449 154 10.2 44.98

AMNH:Birds:637450 torotoro Toe	pad Humbolt	Bay,	Papua	Province,	Indonesia 1928 88 3,692,636 16,359 75.1 0.89 12.06 11.85 14.62 153 543 15 0.714 48.74

AMNH:Birds:637429 torotoro Toe	pad Misool	Island,	West	Papua	Province,	Indonesia 1900 116 13,531,142 35,925 79.8 2.13 9.46 9.30 30.09 412 448 26 2.54 46.44

AMNH:Birds:300723 torotoro Toe	pad Waigeu	Island,	West	Papua	Province,	Indonesia 1900 116 14,143,466 34,596 82.2 1.91 10.03 9.86 27.78 508 401 21 0.846 46.88

AMNH:Birds:637446 torotoro Toe	pad Kepaur,	West	Papua	Province,	Indonesia 1897 119 20,487,169 36,627 84.1 2.15 8.02 7.88 23.19 177 600 22 1.07 48.18

NHMUK:ZOO:1911.12.20.823 pseuestes Toe	pad Mimika	River,	Papua	Province,	Indonesia 1913 103 2,875,704 19,115 50.9 1.55 10.85 10.66 20.44 239 611 40 1.49 47.28

NHMUK:ZOO:1911.12.20.822 pseuestes Toe	pad Satakwa	River,	Papua	Province,	Indonesia 1911 105 5,464,605 46,548 59.8 2.08 9.44 9.28 24.39 296 579 36 0.584 48.32

AMNH:Birds:437798 torotoro Toe	pad Amberbaki,	West	Papua	Province,	Indonesia 1877 139 1,579,610 4,957 73.4 0.39 9.1 8.94 4.58 52 582 4 1.84 48.88

AMNH:Birds:637441 torotoro Toe	pad Mt.	Mori,	West	Papua	Province,	Indonesia 1899 117 6,803,386 19,623 76.9 1.3 9.5 9.34 21.38 157 512 11 7.36 47.89

AMNH:Birds:293741 torotoro Toe	pad Ifaar,	Papua	Province,	Indonesia 1928 88 27,602,106 49,786 91.1 2.14 12.48 12.27 23.84 493 447 28 0.124 50.41

AMNH:Birds:293715 torotoro Toe	pad Kepaur,	West	Papua	Province,	Indonesia 1928 88 30,751,249 56,972 90.5 2.15 11.15 10.96 24.2 438 504 30 0.15 50.95
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(Lycaena helle)	and	grasshopper	(Oedaleus decorus).	They	discussed	the	
impact	of	library	preparation,	sample	type,	and	bioinformatics	pipeline	
on	the	number	of	SNPs	produced.	Here,	we	provide	an	 independent	
assessment	of	the	effectiveness	of	hyRAD	using	both	fresh	avian	tis-
sues	and	dried	tissue	taken	from	museum	specimens	up	to	140	years	
old.	We	present	a	modified	version	of	 the	hyRAD	protocol	 aimed	at	
increasing	efficiency	and	minimizing	reagent	use	and	employ	a	custom	
bioinformatics	pipeline	with	steps	for	detecting	and	removing	microbial	
contamination	in	raw	reads,	contiguous	sequences,	and	SNPs.	We	uti-
lize	hyRAD	data	to	describe	phylogeographic	patterns	in	a	New	Guinea	
forest	kingfisher	(Syma torotoro)	and	we	expand	the	available	descrip-
tion	of	hyRAD’s	performance	by	investigating	how	variable	input	DNA	
affects	sequencing,	assembly,	and	population	genetic	inferences.

2  | METHODS

2.1 | Study species, sampling, and DNA extraction

A	 major	 promise	 of	 museum	 genomics	 is	 the	 ability	 to	 conduct	
population-	level	 studies	 in	 regions	 that	 are	 too	 logistically	 difficult	
to	be	amenable	to	broad	modern	sampling	programs.	The	 island	of	
New	Guinea	 is	an	apt	example	of	this	scenario,	with	poorly	known	
biodiversity,	 large	 historical	 collections,	 rugged	 terrain,	 and	 ongo-
ing	political	 instability	 (Mack	&	Dumbacher,	2007;	Pratt	&	Beehler,	

2014).	 Phylogeographic	 research	 in	 New	 Guinea	 has	 been	 limited	
(Deiner,	Lemmon,	Mack,	Fleischer,	&	Dumbacher,	2011;	Dumbacher	
&	 Fleischer,	 2001),	 especially	 in	 the	 species	 inhabiting	 the	 island’s	
ring	of	lowland	tropical	rainforest.	To	evaluate	the	efficacy	of	for	use	
in	a	broader	study	of	the	phylogeography	of	lowland	new	Guinea,	we	
sampled	21	individuals	of	forest	interior	resident	S. torotoro	(Yellow-	
billed	 Kingfisher),	 representing	 five	 named	 subspecies	 and	 the	
breadth	of	the	species’	range	on	the	island	of	New	Guinea	(Table	1).	
For	 seven	 individuals,	 we	 extracted	 whole-	genomic	 DNA	 from	
fresh	tissue	using	a	DNeasy	tissue	extraction	kit	 (Qiagen,	Valencia,	
CA,	USA)	 following	 the	manufacturer’s	protocol.	For	 the	 remaining	
14	 individuals,	 we	 extracted	 DNA	 from	 the	 toe-	pads	 of	 museum	
study	skins	in	a	dedicated	ancient	DNA	laboratory	at	the	California	
Academy	of	Sciences	using	a	phenol–chloroform	and	centrifugal	dial-
ysis	method	described	elsewhere	(Dumbacher	&	Fleischer,	2001).	No	
modern	DNA	or	post-	PCR	products	 are	handled	 in	 this	 laboratory,	
which	is	located	on	a	separate	floor	from	the	main	genetics	facility.

2.2 | Library preparation, hybridization capture 
experiments, and sequencing

We	 prepared	 samples	 for	 reduced-	representation	 whole	 genome	
sequencing	 using	 a	 modified	 version	 (Hanna	 &	 Sellas,	 2016)	 of	
Suchan	et	al.’s	 (2016)	hyRAD	method	aimed	at	 increasing	efficiency	

TABLE  1 Sampling	information

Specimen Subspecies
Sample 
type Locality

Date 
collected

Age of 
sample 
(years)

Total number 
 of reads

Number of 
cleaned 
reads

% 
Duplicate 
reads

Average 
coverage 
(X) Specificity

Fold 
enrichment Sensitivity Loci

Average 
locus 
length (nt)

Number 
of contigs 
over 1KB

Initial 
concentration 
(ng/μl)

GC content of 
on- target 
contigs
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of	reactions	and	reducing	reagent	use.	We	present	this	protocol	in	a	
detailed	bench-	ready	version	online	(https://github.com/calacademy-
research/hyRADccg)	and	summarize	it	below.

To	produce	biotinylated	probes,	we	performed	a	double	restriction	
digest	with	enzymes	MluCl	and	SphI	(New	England	Biolabs)	on	400	ng	
of	high	molecular	weight	DNA	extracted	from	fresh	tissue	of	a	single	
S. t. ochracea	 individual.	After	 ligation	 of	 adapters	 to	 fragments,	we	
size-	selected	the	resulting	fragments	on	a	Pippin	Prep	(Sage	Science,	
Beverly,	MA,	USA)	with	a	 target	peak	at	270	bp	and	“tight”	size	se-
lection	range.	We	ran	16	cycles	of	real-	time	polymerase	chain	reac-
tion	(RT-	PCR)	and	purified	products	by	gel	excision	and	a	Zymoclean	
Gel	Recovery	Kit	 (Zymo	Research).	We	preserved	one	aliquot	of	this	
product	 for	 sequencing	 while	 performing	 an	 additional	 MluCl/SphI	
double	digest	to	de-	adapterize	a	second	aliquot.	We	labeled	this	dead-
apterized	aliquot	with	biotin-	14-	dATP,	using	a	BioNick	DNA	Labeling	
System	(Thermofisher	Scientific).

To	 produce	whole	 genome	 libraries,	we	 sheared	 high	molecular	
weight	DNA	from	modern	tissue	samples	to	~400	bp	using	a	M-	220	
Focused-	ultrasonicator	 (Covaris).	DNA	 from	museum	 specimen	 toe-
pads	was	already	fragmented	as	a	product	of	natural	degradation	as-
sociated	with	the	age	of	the	samples	and	was	therefore	left	untreated.	
For	both	modern	and	historic	 samples,	we	used	a	Kapa	Hyper	Prep	
Kit	(Kapa	Biosystems)	to	prepare	dual-	indexed	libraries.	We	amplified	
libraries	 using	 5–13	 cycles	 of	 RT-	PCR.	After	 quantifying	 DNA	 con-
tent	in	each	sample,	we	made	standardized	dilutions	of	each	sample	
and	combined	equal	amounts	of	these	dilutions	to	create	one	pool	of	
modern	DNA	samples	(n	=	6)	and	two	pools	of	ancient	DNA	samples	
(n	=	7	each).	We	used	a	1–1.5×	ratio	of	AmPure	XP	beads	to	remove	
small	 DNA	 fragments	 throughout	 the	 protocol	 and	 assessed	 DNA	
quantity	and	quality	with	a	Qubit	2.0	fluorometer	and	an	Agilent	2100	
Bioanalyzer	between	all	major	steps.

To	 perform	 hybridization	 capture	 reactions,	 we	 incubated	 each	
pool	of	samples	with	250	ng	of	biotinylated	probe	for	72	hr	at	55°C	in	
a	solution	containing	20×	saline-	sodium	citrate	(SSC),	50×	Denhardt’s	
Solution,	 0.5	mol/L	 EDTA,	 10%	 sodium	 dodecyl	 sulfate	 (SDS),	 and	
a	 blockers	 mix	 containing	 Chicken	 Hybloc	 (0.5	μg/μl),	 IDT’s	 xGen	
Universal	 Blocking	 Oligo	 -	TSHT-		 i5	 (0.05	nmol/μl),	 and	 IDT’s	 xGen	
Universal	Blocking	Oligo	-	TSHT-		i7	(0.05	nmol/μl).	Following	hybridiza-
tion,	we	prepared	50	μl	Dynabeads	MyOne	Streptavidin	C1	beads	for	
use	by	washing	three	times	with	1×	binding	buffer	containing	2	mol/L	
NaCl,	10	mmol/L	Tris–HCl	(pH	7.5),	0.5%	Polysorbate	20	(Tween-	20),	
and	1	mmol/L	EDTA,	and	final	resuspension	in	70	μl	2×	binding	buffer.	
We	then	bound	the	probes	to	the	beads	by	mixing	and	incubating	at	
room	temperature	 for	30	min.	After	performing	 three	500	μl	washes	
of	the	bead-	probe	mixture	using	a	prewarmed	buffer	containing	10%	
SDS	with	0.1×	SSC,	we	concentrated	our	final	pooled	libraries	in	30	μl 
10	mm	Tris–HCl,	0.05%	Tween-	20	(pH	8–8.5).	We	next	amplified	these	
libraries	using	RT-	PCR	for	9–2	cycles,	cleaned	using	1.2×	Ampure	XP	
beads,	and	quantified	using	Qubit.	We	sent	a	single	final	pool	with	equi-
molar	amounts	of	all	three	hybridized	pools	to	University	of	California	
Bekeley’s	 QB3	 Vincent	 J.	 Coates	 Genomics	 Sequencing	 Laboratory	
(hereafter	 called	 “QB3”)	 for	 sequencing	with	 100-	bp	 paired-	end	 se-
quence	reads	on	a	single	lane	of	an	Illumina	HiSeq	4000.

2.3 | Sequence read quality control, assembly,  
and alignment

To	clean	and	quality	filter	reads,	assemble	reads	into	contigs,	align	se-
quences	across	samples,	and	map	reads	to	merged	alignments	for	SNP	
discovery,	we	used	a	custom	pipeline	combining	in-	house	R	scripts	as	
well	as	pre-	existing	genomics	tools	and	wrapper	scripts	 from	QB3’s	
two	de	novo	targeted	capture	bioinformatics	pipelines	(https://github.
com/CGRL-QB3-UCBerkeley;	 “denovoTargetCapturePopGen”	 and	
“denovoTargetCapturePhylogenomics”).	We	present	our	full	pipeline	
online	as	both	a	tutorial	and	a	list	of	shell	commands	(https://github.
com/elinck/hyRAD/)	(Figure	1).

We	first	processed	reads	from	our	probe	library	with	pyRAD	ver-
sion	2.17	(Eaton,	2014)	to	create	a	pseudo-	reference	genome	to	use	
as	the	basis	for	aligning	sequences	from	samples	in	our	hybridization	
capture	 reactions.	After	quality-	filtering	 reads	and	 trimming	adapter	
contamination,	 pyRAD	 used	 the	 vsearch	 algorithm	 (Rognes,	 Flouri,	
Nichols,	Quince,	&	Mahé,	2016)	to	cluster	reads	into	loci	within	sam-
ples,	cluster	loci	into	stacks	between	samples,	and	aligned	putatively	
orthologous	loci	using	MUSCLE	version	3.8	(Edgar,	2004).	We	imple-
mented	strict	adapter	filtering,	retained	reads	longer	than	70	bp	after	
trimming,	set	a	minimum	sequence	identity	threshold	of	97%	for	clus-
tering,	and	kept	four	sites	per	cluster	with	a	Phred	Quality	Score	<20.	
(This	strict	identity	threshold	was	selected	to	generate	an	estimate	of	
the	total	number	of	fragments	in	our	probe	library.)	We	removed	re-
petitive	genomic	regions	and	paralogs	with	the	NCBI	BLAST+	version	
2.4	 tool	BLASTn	 (Boratyn	et	al.,	2013)	by	aligning	 the	output	 file	of	
assembled	clusters	against	itself	and	retained	only	cluster	sequences	
that	aligned	uniquely	to	themselves	using	an	e-	value	of	0.00001.

To	 remove	 reads	 that	 failed	 to	 pass	 Illumina	 quality	 control	 fil-
ters,	 trim	 reads	 for	 quality	 and	 adapter	 contamination,	merge	 over-
lapping	 reads,	 remove	 PCR	 duplicates,	 and	 remove	 endogenous	
E. coli	 contamination,	 we	 used	 QB3’s	 denovoTargetCapturePop-
Gen	 “2-	ScrubReads”	wrapper	 around	 the	Trimmomatic	 version	 0.36	
(Bolger,	Lohse,	&	Usadel,	2014),	Bowtie	2	(Langmead,	2010),	Cutadapt	
(Martin,	 2011),	 Cope	 (Liu	 et	al.,	 2012),	 FastQC	 (http://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/),	 and	 FLASh	 (Magoc	 &	
Salzberg,	 2011)	 tools.	We	 assembled	 cleaned	 and	 filtered	 reads	 for	
each	sample	using	QB3’s	denovoTargetCapturePhylogenomics	wrap-
per	 script	 “2-	GenerateAssembliesPhylo”	 around	 the	 SPAdes	 version	
3.8.1	genome	assembler	(Bankevich	et	al.,	2012),	which	automatically	
selects	a	k-mer	value	based	on	read	length	and	dataset	type.	To	deter-
mine	which	contigs	from	our	capture	libraries	were	orthologous	with	
probe	 regions,	 we	 used	 the	 denovoTargetCapturePopGen	 wrapper	
“5-	FindingTargets”	around	the	BLAST+	(Boratyn	et	al.,	2013)	and	cd-	
hit-	est	 (Fu,	Niu,	Zhu,	Wu,	&	Li,	2012)	 tools.	Analyzing	samples	 from	
modern	and	historical	DNA	separately,	we	used	a	clustering	identity	
threshold	 of	 95%	and	permitted	100	bp	of	 sequencing	 flanking	 the	
core	probe	region.	After	determining	matches,	we	collapsed	overlap-
ping,	 orthologous	 contigs	 from	 all	 modern	 samples	with	 the	 probe	
library	 to	generate	an	extended	pseudo-	reference	genome	to	which	
we	 aligned	 cleaned	 reads	using	QB3’s	 denovoTargetCapturePopGen	
wrapper	 “7-	Alignment”	 around	 the	 Novoalign	 version	 3.04.06	 tool	

https://github.com/calacademy-research/hyRADccg
https://github.com/calacademy-research/hyRADccg
https://github.com/CGRL-QB3-UCBerkeley
https://github.com/CGRL-QB3-UCBerkeley
https://github.com/elinck/hyRAD/
https://github.com/elinck/hyRAD/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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(http://www.novocraft.com/products/novoalign/).	We	 ran	Novoalign	
with	an	average	library	insert	size	of	235	and	a	maximum	alignment	
score	of	90.

2.4 | SNP discovery

Traditional	SNP	calling	algorithms	based	on	allele	counting	and	qual-
ity	scores	are	characterized	by	high	degrees	of	uncertainty	with	low-	
coverage	sequence	data	(Korneliussen,	Albrechtsen,	&	Nielsen,	2014).	
We	incorporated	uncertainty	into	genotype	estimation	by	calling	SNPs	
and	estimating	allele	frequencies	using	an	empirical	Bayesian	frame-
work	 implemented	 in	 the	 software	 ANGSD	 version	 0.913	 (http://
www.popgen.dk/angsd/index.php/ANGSD).	 ANGSD	 uses	 the	 likeli-
hood	of	all	10	possible	genotypic	configurations	for	each	site	passing	
quality	filters	in	all	individuals	to	estimate	a	site	frequency	spectrum,	
which	is	then	used	as	a	prior	to	estimate	the	posterior	probabilities	for	
all	possible	allele	frequencies	at	each	site	in	each	sample.	Using	these	
estimates,	we	called	SNPs	with	a	95%	probability	of	being	variable	and	
a	minimum	minor	allele	frequency	of	5%.

2.5 | Contamination control and data filtering

In	order	 to	 identify	 if	 any	contigs	 in	our	assemblies	 represented	off-	
target	mtDNA	captures,	we	performed	a	BLAST+	(Boratyn	et	al.,	2013)	
nucleotide	search	with	each	of	our	assemblies	as	a	query	against	a	da-
tabase	of	the	full	mitochondrial	genome	of	S. torotoro	relative	Halcyon 
santcus.	We	 then	 removed	 all	 matching	 contigs	 from	 each	 sample’s	
assembly	 fasta	 with	 in-	house	 R	 scripts	 (“excerptcontigIDs.R”	 and	
“cutcontigsbatch.R”)	and	used	these	mtDNA-	free	sequences	for	all	sub-
sequent	assembly	performance	calculations.	To	prepare	our	sequence	
alignment	 in.sam/.bam	 format	 for	 SNP	 calling,	 we	 followed	 Bi	 et	al.	
(2013)	in	hierarchically	filtering	out	individuals,	contigs,	and	sites	that	
appeared	to	be	quality	outliers	and	implemented	additional	steps	for	re-
gions	derived	from	microbial	contamination	or	mtDNA.	We	determined	
no	individuals	had	abnormal	coverage	(defined	as	<1/3	or	>3×	the	av-
erage	coverage	across	all	 individuals)	and	we	created	merged,	sorted	
BAM	files	and	generated	raw	variant	call	format	files	(.vcf)	with	sam-
tools	version	1.3	(Li	et	al.,	2009)	and	bcftools	version	1.3.1	(Narasimhan	
et	al.,	2016),	processing	modern	and	historical	DNA	samples	separately.

F IGURE  1 Bioinformatics	pipeline	for	
S. torotoro	hyRAD	data.	We	demultiplexed	
100-	bp	paired-	end	reads	from	three	
genomic	libraries	and	filtered	for	adapter	
contamination/quality	scores	(A),	or	
adapter	contamination/quality	scores	and	
E. coli	contamination	(A1).	Reads	were	
clustered	(as	consensus	fasta	files)	(B),	
and	repeat	regions	removed	from	probes	
(C).	After	determining	which	assembled	
clusters	were	orthologous	with	probe	
regions	(D),	we	merged	flanking	regions	
from	on-	target	loci	in	modern	samples	with	
the	repeat-	free	probe	sequence	to	create	
a	pseudo-	reference	genome	(E).	To	identify	
which	contigs	represented	contamination	
in	the	original	probe	sample	library	from	
exogenous	microbes	or	mitochondrial	
DNA,	we	BLAST	searched	against	both	the	
NCBI	nt	database	and	a	full	mitochondrial	
genome	from	S. torotoro	relative	Halcyon 
sanctus	(F).	We	aligned	quality	filtered	
reads	to	this	pseudo	reference	(G),	called	
SNPs	to	produce	a	raw.vcf	file	for	historic	
and	modern	DNA	libraries	separately	
(H).	After	filtering	SNPs	for	origin	in	
contaminant	contigs	and	then	restricting	
our	matrix	to	sites	present	in	both	sample	
types	(I),	we	filtered	SNPs	by	read	depth,	
quality	scores,	probability	of	being	variable	
sites,	and	minor	allele	frequencies	(J)	prior	
to	downstream	analyses
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Because	our	SNP	matrix	was	derived	independently	from	our	as-
semblies,	we	performed	a	second	step	of	contamination	 filtering	by	
removing	SNPs	originating	from	read	alignments	to	regions	of	exog-
enous	 microbial	 DNA	 and/or	 mtDNA	 present	 in	 the	 original	 probe	
sample	 RAD	 library.	We	 used	 our	 full	 pseudo-	reference	 genome	 as	
the	query	in	a	search	of	the	entire	BLAST+	(Boratyn	et	al.,	2013)	nu-
cleotide	database	and	our	H. sanctus	mtDNA	BLAST+	database.	We	
then	used	Henderson	and	Hanna’s	(2016)	“GItaxidIsVert.py”	script	to	
identify	sequences	that	were	potentially	microbial	 in	origin	and	per-
formed	a	second	BLAST+	search	with	this	subset	to	further	select	only	
the	subset	of	contigs	that	had	their	best	or	only	alignment	with	non-
vertebrate	reference	genomes.	To	exclude	such	sequences	as	well	as	
those	aligning	with	mtDNA	sequence,	we	used	 the	vcftools	version	
0.1.11	“–not-	chr”	flag	and	removed	indels	in	the	same	step	with	the	
“–remove-	indels”	flag.

We	 estimated	 independent	 empirical	 gene	 coverage	 and	 site	
depth	 distributions	 using	 QB3’s	 denovoTargetCapturePopGen	
“9-	preFiltering”	 script	 and	 used	 these	 distributions	 as	 input	 to	 the	
QB3	“10-	SNPcleaner”	script.	Run	separately	for	modern	and	historical	
samples,	 this	 script	 removed	 all	 sites	with	 coverage	below	6×,	 sites	
missing	in	more	than	half	of	our	samples,	and	sites	with	variant	iden-
tity	biases	associated	with	quality	score,	mapping	quality,	or	distance	
of	alleles	from	the	ends	of	reads.	Because	hydrolytic	deamination	of	
cytosine	 (C)	 to	 uracil	 (U)	 residues	 is	 the	 most	 common	 form	 post-
mortem	 nucleotide	 damage	 present	 in	 historic	 museum	 specimens,	
which	may	result	in	misincorporation	of	thymines	(Ts)	instead	of	uracil	
during	PCR	amplification	and	bias	population	genetic	 inference,	 this	
script	also	eliminated	all	C	to	T	and	G	to	A	SNPs	(Axelsson,	Willerslev,	
Gilbert,	&	Nielsen,	2008;	Briggs	et	al.,	2007;	Hofreiter,	Jaenicke,	Serre,	
von	Haeseler,	&	Pääbo,	2001).	Finally,	we	used	the	BEDtools	version	
2.26.0	 “intersect”	 function	 (Quinlan	&	Hall,	2010)	 to	 retain	only	 the	
sites	that	passed	all	filters	for	both	historic	and	modern	specimens.

2.6 | Statistical analyses

To	assess	 the	differences	 in	 sequencing	and	assembly	performance	
between	modern	 and	 historical	 samples,	 we	 implemented	Wright’s	
two-	sample	t	 tests	 in	the	R	 (R	Core	Team	2016).	We	evaluated	dif-
ferences	between	groups	in	the	mean	percentage	of	duplicate	reads,	
the	mean	number	of	on-	target	contigs,	the	mean	length	of	on-	target	
contigs,	 and	 the	 percentage	 of	 sequenced	 reads	 successfully	 map-
ping	to	our	pseudo-	reference	genome.	Because	some	commonly	used	
polymerases	 bias	 against	 amplification	 of	 targeted	DNA	 in	 favor	 of	
the	GC-	rich	microbial	 contamination	 common	 to	extracts	 from	mu-
seum	specimens	 (Dabney	&	Meyer,	2012),	we	assessed	differences	
in	 GC	 content	 present	 in	 assembled	 on-	target	 contigs.	 In	 order	 to	
determine	whether	sample	age,	initial	sample	DNA	concentration,	or	
sequencing	effort	were	significant	predictors	of	%GC	content	among	
historical	 samples	and	mean	number	or	 length	of	on-	target	contigs,	
we	 used	 simple	 linear	 regression.	 We	 used	 stepwise	 model	 selec-
tion	with	corrected	Akaike	information	criterion	scores	to	determine	
best-	fit	models	and	did	not	 include	 interaction	terms	to	avoid	over-	
parameterization	given	our	small	sample	size.

2.7 | Population genetic clustering and discriminant 
analysis of principal components

Although	 accurate	 estimation	 of	 population	 genetic	 structure	 in	
S. torotoro	was	not	the	primary	goal	of	our	study,	we	were	nonethe-
less	 interested	 in	 assessing	 hyRAD’s	 ability	 to	 produce	 biologically	
meaningful	 results	 by	 testing	 whether	 our	 data	 reflected	 the	 sig-
nature	 of	 phylogeographic	 processes	 such	 as	 isolation	 by	 distance	
(IBD)	and	vicariance,	rather	than	the	signature	of	DNA	degradation,	
contamination,	or	other	artifacts	of	library	preparation	and	sequenc-
ing.	We	implemented	k-	means	clustering	and	discriminant	analysis	of	
principal	 components	 (DAPC)	 in	 the	R	package	adegenet	 (Jombart,	
2008),	using	100%	complete	data	matrix	 (1,690	SNPs)	 to	avoid	bi-
asing	 inferences	with	nonrandom	patterns	of	missing	data.	We	 re-
tained	all	principal	component	(PC)	axes	for	k-	means	clustering	and	
inspected	both	population	assignments	and	change	 in	Bayesian	 in-
formation	criterion	(BIC)	scores	across	multiple	values	of	K	to	select	
an	optimal	partitioning	scheme.	To	maximize	among-	population	vari-
ation	 and	 calculate	 ancestral	 population	 membership	 probabilities	
for	each	sample,	we	performed	DAPC	on	the	first	six	PCs	using	two	
discriminant	axes.	We	then	chose	to	retain	these	six	PCs	to	optimize	
the	a-score	value	for	our	data,	which	is	the	difference	between	the	
proportion	of	successful	reassignment	of	the	analysis	and	values	ob-
tained	using	 random	groups.	However,	 because	 the	 change	 in	BIC	
scores	failed	to	clearly	indicate	any	“true”	value	of	K,	we	repeated	our	
analysis	with	clustering	assignments	for	K	values	of	1–8.	To	explore	
correlations	between	our	three	retained	PCs	and	variables	expected	
to	differ	between	modern	and	historic	samples	(specificity,	sensitiv-
ity,	fold	enrichment,	age,	 initial	concentration),	we	again	performed	
simple	 linear	regressions.	Finally,	 to	test	 for	patterns	of	 IBD	across	
our	samples,	we	performed	a	Mantel	test	among	all	individuals	based	
on	999	simulated	replicates	using	the	R	package	ade4	(Thioulouse	&	
Dray,	2007).

3  | RESULTS

3.1 | Hybridization capture experiments and 
sequencing

We	obtained	 a	 total	 of	 397	million	 sequence	 reads	 for	 the	 probe	
and	 hybridization	 capture	 libraries,	 successfully	 demultiplexing	
20/21	samples,	with	one	sample	failing	due	to	bar	code	error.	The	
total	reads	per	sample	ranged	from	1.6	million	to	30.7	million,	and	
the	average	number	of	reads	per	sample	did	not	vary	significantly	
between	 modern	 and	 historical	 samples	 (t = −0.946,	 df	=	14.6,	
p = .359).	 Of	 the	 original	 397	million	 reads,	 19.8%	 passed	 initial	
Illumina	 quality	 filters,	 contamination	 checks,	 adapter	 trimming,	
and	 removal	of	PCR	duplicates	 (Table	1).	The	 resulting	number	of	
cleaned	 reads	 per	 sample	 ranged	 from	 approximately	 16,000	 to	
3.1	million,	 with	 an	 average	 count	 of	 766,662,	 and	 significantly	
fewer	reads	for	historic	samples	(t = −3.185,	df =	13.088,	p = .007).	
Most	reads	lost	to	quality	control	were	PCR	duplicates,	with	a	range	
of	 50.9%–91.1%	 duplicate	 reads	 per	 sample.	 2,455	 reads	 were	
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removed	as	E. coli	 contamination	 from	12	of	20	 individuals	 (range	
1–2,318	reads	per	individual)	(Table	2).	The	average	depth	of	read	
coverage	per	 sample,	 calculated	as	 the	 read	depth	per	base	aver-
aged	 across	 the	 length	 of	 the	 pseudo-	reference	 genome,	 ranged	
from	 7.6	 to	 26.4,	 and	 was	 significantly	 lower	 in	 historic	 samples	
(t = −3.754,	df =	12.632,	p =	.002).

3.2 | Assembly and alignment results

Assembly	of	our	probe	library	in	pyRAD	resulted	in	a	total	of	554,048	
contigs	 and	 61.9	million	 nucleotides	 (nt),	 which	 was	 reduced	 to	
160,014	 unique	 contigs	 and	 16.1	million	 nt	 after	 excluding	 repeti-
tive	regions.	We	captured	orthologous	loci	from	all	successfully	se-
quenced	samples,	and	after	merging	the	probe	library	with	flanking	

regions	 from	 assemblies	 of	 other	 modern	 tissue	 samples	 our	 ex-
tended	pseudo-	reference	genome	contained	29,297	loci.	The	num-
ber	of	contigs	per	sample	that	was	orthologous	to	our	probe	library	
ranged	 from	 55	 to	 23,155	 and	was	 significantly	 higher	 in	modern	
samples	 (Table	1;	Figure	2).	Across	all	 samples,	we	discarded	55%–
92%	of	the	total	number	of	assembled	clusters	as	off-	target	loci,	los-
ing	significantly	more	from	historic	samples	(t	=	6.6035,	df	=	16.889,	
p <	.001).	We	removed	an	additional	eight	contigs	from	the	modern	
samples	 and	53	 contigs	 from	 the	historic	 samples	due	 to	 their	mi-
tochondrial	 origin	 (Table	2).	Mean	 contig	 size	 ranged	 from	 401	 to	
611	nt	and	did	not	differ	significantly	between	modern	and	historic	
samples.	However,	the	historic	samples	had	significantly	fewer	con-
tigs	exceeding	1	knt	in	length	(t = –3.181,	df =	5.004,	p = .025).	The	
percentage	of	reads	passing	quality	filters	that	successfully	mapped	

Contamination 
filtering step Sample type Total count Count removed Percent removed

Raw	reads Modern 13,942,179 4 <0.001

Historic 548,415 2,451 0.44

Assembled	contigs Modern 296,828 8 <0.001

Historic 36,109 53 0.15

SNP	matrix Modern 6,915,902 6,620 <0.001

Historic 749,091 3,945 0.53

TABLE  2 Results	of	microbial	and	
mitochondrial	contamination	removal	at	
three	distinct	steps.	Raw	reads	were	
filtered	for	E. coli	contamination;	
assemblied	contigs	were	filtered	for	
mitochondrial	DNA;	SNP	matrices	were	
filtered	for	both	microbial	DNA	and	
mitochondrial	DNA

F IGURE  2 Differences	in	sequencing	and	assembly	performance	between	historical	and	modern	DNA	extractions.	We	observed	significantly	
higher	specificity	(t	=	−17.711,	df =	14.015,	p <	.001),	sensitivity	(t	=	–12.928,	df =	14.014,	p <	.001),	fold	enrichment	(t	=	−17.711,	df	=	14.015,	
p <	.001),	and	average	coverage	(t	=	−6.248,	df =	7.555,	p <	.001)	in	modern	samples.	We	recovered	a	significantly	higher	total	number	of	on-	
target	loci	in	modern	samples	(t	=	−12.239,	df =	5.221,	p <	.001),	but	significantly	higher	mean	percent	GC	content	in	historic	samples	(t	=	6.997,	
df	=	13.368,	p <	.001).	We	observed	no	significant	differences	between	modern	and	historic	samples	for	mean	contig	size	or	mean	percentage	of	
duplicate	reads
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to	the	pseudo-	reference	genome	(also	known	as	specificity)	ranged	
from	 51.8%	 to	 57.7%	 and	was	 significantly	 higher	 on	 average	 for	
modern	 samples	 (Figure	2).	 Additionally,	 %GC	 content	 was	 sig-
nificantly	higher	 in	historic	than	modern	samples	(Figure	2).	Among	
historic	samples,	the	number	of	cleaned	reads	was	a	significant	pre-
dictor	of	the	number	of	captured	loci	and	sample	input	DNA	quantity	
was	a	significant	predictor	of	%GC	content	 in	on-	target	assembled	
contigs	(Figure	3).

3.3 | SNP discovery and filtering

We	identified	two	contigs	of	mitochondrial	origin	and	eight	contigs	of	
potential	nonvertebrate	origin	 in	our	pseudo-	reference	genome	and	
excluded	all	 sites	 from	 these	 contigs	 in	our	 alignment	prior	 to	SNP	
calling	 (Table	2).	 Using	 ANGSD,	 we	 identified	 39,105	 high-	quality	
SNPs	with	at	least	a	95%	probability	of	being	variable	from	3,206	loci,	
for	 a	matrix	 completeness	 of	 62.8%	 (or	 37.2%	missing	 data	 across	
all	 individuals).	Per	individual,	the	proportion	of	missing	sites	ranged	
from	5.6%	to	90.6%,	with	a	significantly	higher	mean	percentage	miss-
ing	 data	 for	 historic	 samples	 (54.5%)	 than	modern	 samples	 (28.3%)	
(t = 6.727,	 df =	14.594,	 p >	.001).	 The	 total	 number	 of	 SNPs	 in	 our	
data	matrix	decreased	linearly	after	the	first	10	individuals	when	we	
increased	the	minimum	number	of	individuals	successfully	genotyped	
to	retain	each	SNP	(Figure	4).

3.4 | Population genetic clustering and discriminant 
analysis of principal components

Discriminant	analysis	of	principal	components	analysis	of	our	100%	
complete	data	matrix	revealed	a	linear	pattern	of	increase	in	the	total	
amount	of	genetic	variation	explained	when	retaining	additional	PCs.	
Replicate	attempts	to	optimize	a-	score	values	alternatively	suggested	
retaining	either	five	or	six	PCs	to	maximize	discrimination	ability	with-
out	overfitting	the	model.	Similarly,	BIC	scores	from	DAPC	decreased	
in	an	approximately	linear	fashion	as	more	clusters	were	added	and	
did	not	indicate	a	clear	shift	to	a	slower	rate	of	BIC	change.	Therefore,	

we	repeated	our	analysis	for	values	of	K	from	1	to	8,	which	revealed	
patterns	of	increasingly	fine,	geographically	coherent	structure	from	
K	=	1	to	K = 5	(Figure	5).	At	K	=	2,	DAPC	separated	individuals	from	
mainland	Papua	New	Guinea	(PNG)	from	individuals	in	western	New	
Guinea	and	Normanby	Island	in	PNG,	which	also	reflected	the	break	
between	modern	and	historic	samples.	At	K	=	3,	DAPC	identified	an	
additional	cluster	from	West	Papua	that	included	individuals	from	the	
southwest	New	Guinea	Coast	and	 the	Aru	 Islands.	At	K	=	4,	DAPC	
isolated	an	individual	from	the	northern	slope	of	the	Arfak	Mountains	
in	Western	New	Guinea,	which,	collected	in	1877,	was	also	the	old-
est	 sample	 included	 in	 our	 study.	 A	 fifth	 cluster	 distinguished	 the	
single	 individual	 from	Normanby	 Island,	PNG.	At	K	=	6	and	greater,	
DAPC	began	subdividing	individuals	into	additional	clusters	without	
a	shared	geographic	basis.	Our	Mantel	 test	did	not	find	statistically	
significant	 correlation	 between	 geographic	 and	 genetic	 distance	
(p	=	.251).	Linear	regression	analyses	showed	significant	correlations	
between	all	variables	and	PC1	but	no	other	PC	and	sample	variable	
pairs	(Table	3).

F IGURE  3 Among	historic	samples,	
the	number	of	trimmed	reads	was	a	
significant	predictor	of	the	number	of	
captured	loci	(R2	=	.872,	p <	.001)	and	the	
initial	sample	DNA	input	quantity	was	a	
significant	predictor	of	percent	GC	content	
in	on-	target	assembled	contigs	(R2	=	.370,	
p =	.016)
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4  | DISCUSSION

4.1 | Hybridization- RAD is an effective tool for 
sampling thousands of orthologous SNPs from historic 
museum specimens

In	their	description	of	hyRAD,	Suchan	et	al.	(2016)	suggest	that	it	al-
lows	“sequencing	of	orthologous	loci	even	from	highly	degraded	DNA	
samples”	and	can	be	used	 to	 retrieve	sequence	data	using	museum	
samples	up	to	100	years	old.

Our	hybridization	capture	experiments	in	an	independent	labora-
tory	with	an	independent	study	organism	(S. torotoro)	largely	support	
this	conclusion.	Assessed	by	the	total	number	assembled	contigs,	or-
thologous	loci,	SNPs	collected,	and	number	of	SNPs	recovered	across	
multiple	individuals	(Table	1;	Figure	4),	our	modified	version	of	Suchan	
et	al.’s	 hyRAD	 protocol	 generated	 sufficient	 quantities	 of	 genome-	
wide	 data	 for	 a	wide	 range	 of	 phylogenetic	 and	 population	 genetic	
questions.	 In	particular,	we	note	 that	our	 application	of	 standard	 li-
brary	 preparation	 methods	 for	 both	 modern	 and	 historic	 libraries	

(as	opposed	to	protocols	optimized	for	degraded	DNA,	as	in	Suchan	
et	al.,	2016)	does	not	appear	to	have	negatively	affected	data	recov-
ery	rates.	We	believe	this	reflects	 the	relative	robustness	of	the	ap-
proach	to	different	taxa,	laboratory	conditions,	specimen	preparation	
conditions,	and	bioinformatics	pipelines.	Even	with	stringent	filtering	
for	 quality	 and	 postmortem	 damage,	 our	 100%	 complete	 data	ma-
trix	of	1,690	SNPs	is	similar	to	the	number	of	orthologous	SNPs	col-
lected	in	similar	studies	of	museum	genomics	that	used	UCE	capture	
(McCormack	et	al.,	2016),	exon	sequence	capture	(Bi	et	al.,	2013),	or	
even	ddRAD	methods	with	fresh	tissues	(Shultz,	Baker,	Hill,	Nolan,	&	
Edwards,	2016),	with	the	caveat	that	differences	in	starting	material,	
evolutionary	timescale,	and	experimental	design	preclude	direct	com-
parisons	across	studies.	For	phylogenetic	or	population	genetic	anal-
yses	methods	 that	 correct	 for	 nonrandom	patterns	 of	missing	 data,	
our	full	matrix	of	39,105	SNPs	potentially	offers	significant	power	to	
resolve	 rapid,	 recent	divergences,	detect	 fine	scale	patterns	of	pop-
ulation	structure,	 infer	historical	effective	population	sizes	with	high	
accuracy,	and	reveal	histories	of	drift,	selection,	and	migration	(Toews	
et	al.,	2016).

F IGURE  5  Individual	membership	
probabilities	for	K	=	3	ancestral	populations	
inferred	from	analyzing	1,690	SNPs	(100%	
complete	data	matrix)	using	discriminant	
analysis	of	principal	components	and	
retaining	six	principal	component	axes	with	
two	discriminant	axes.	Individual	sampling	
locations	are	color	coded	accordingly
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Suchan	et	al.	(2016)	included	historical	museum	specimens	up	to	
58	years	old	in	their	validation	experiment	and	up	to	100	years	old	in	
their	pilot	study.	We	successfully	captured	55	on-	target	loci,	including	
four	 contigs	exceeding	1	kb	 in	 length,	 from	a	 specimen	collected	 in	
1877,	and	as	many	as	508	loci	from	specimens	collected	from	1896	to	
1934	(Table	1).	Moreover,	and	contrary	to	similar	analyses	by	Suchan	
et	al.	 (2016)	 and	McCormack	 et	al.	 (2016),	we	 found	 no	 significant	
linear	relationship	between	age	and	assembly	or	sequencing	success	
metrics	across	historical	samples.	While	this	is	possibly	an	artifact	of	
small	sample	size	relative	to	both	previous	studies,	it	may	also	suggest	
a	relatively	shallow	trend	of	degradation	during	a	period	when	many	
bird	specimens	in	natural	history	museums	were	originally	collected.	
This	 is	an	encouraging	result	for	researchers	 looking	to	make	use	of	
these	specimens	as	a	genomic	resource.

4.2 | Variation in sequencing and assembly 
performance across sample types reduces efficiency

Our	 small	 sample	 size	 prevents	 us	 from	making	 broad	 conclusions	
about	 factors	affecting	variation	 in	enrichment,	 sequencing,	and	as-
sembly	 performance.	 However,	 preliminary	 statistical	 analyses	 re-
vealed	 variation	between	modern	 and	 ancient	DNA	 libraries	 across	
numerous	 metrics.	 Modern	 DNA	 samples	 had	 significantly	 higher	
specificity	(%	mapped	cleaned	reads),	sensitivity	(%	of	probe	sequence	
with	at	least	1×	coverage),	and	fold	enrichment	(the	fold	increase	in	
%	mapped	reads	over	baseline	random	expectations)	(Figure	2).	While	
initially	 intuitive,	 our	 findings	 contrast	 with	 the	 results	 of	 Bi	 et	al.	
(2013)	 and	 Suchan	 et	al.	 (2016),	who	 found	 improved	 capture	 effi-
ciency	with	historic	samples,	potentially	 related	to	smaller	 fragment	
size.	We	 encourage	 future	 studies	 to	 explore	 how	 variation	 in	 hy-
bridization	capture	protocols	affects	relative	performance	of	different	
sample	DNA	sources.

Encouragingly,	there	were	no	significant	differences	between	the	
two	sample	populations	for	the	overall	percentage	of	duplicate	reads.	
However,	we	wish	to	highlight	the	high	percentage	of	duplicate	reads	
present	in	all	samples	(50.9%–91.1%).	This	may	be	due	to	combination	
of	the	relatively	high	number	of	amplification	cycles	used	to	amplify	
libraries	with	 low	 input	DNA	prior	 to	 pooling.	While	 high	 duplicate	
read	 percentages	 have	 also	 been	 reported	 in	 RADseq	 studies	with	
fresh	 tissue	 (Andrews	 et	al.,	 2016),	 this	 inefficiency	 is	 important	 to	
consider	when	working	with	valuable,	 low-	quality	historical	samples,	
as	increased	sequencing	effort	may	be	required	to	generate	sufficient	
read	depth	for	variant	detection	and	accurate	assembly	of	contiguous	
sequences.

Lastly,	following	assembly,	the	total	number	of	captured	on-	target	
loci	was	higher	among	modern	samples,	 likely	reflecting	higher	copy	
number	and	 limited	degradation	of	DNA	 from	 fresh	 tissues.	 In	 con-
trast,	mean	 contig	 length	 did	 not	 vary	 significantly	 among	 samples,	
indicating	 similar	 assembly	 performance	 relative	 to	 the	 amount	 of	
high-	quality	data	 for	each	sample	 type.	While	we	believe	 this	 result	
will	prove	robust	to	different	assembly	methods,	we	encourage	future	
studies	to	explore	their	influence	on	resulting	assemblies	and	down-
stream	analyses.

4.3 | Input DNA quantity predicts GC content, 
suggesting PCR bias

Although	 inferences	are	similarly	 limited	by	sample	size,	our	regres-
sion	analyses	largely	failed	to	reveal	significant	correlations	between	
input	DNA/sequencing	variables	and	assembly	performance	except	in	
two	comparisons	(Figure	2).	First,	an	increase	in	the	number	of	filtered	
reads	was	positively	correlated	with	 the	 total	number	of	assembled	
on-	target	contigs,	which	matches	a	standard	expectation	of	increased	
recovery	with	greater	sampling	of	a	genomic	library	with	an	uneven	
distribution	of	fragments,	suggested	for	our	libraries	by	the	high	lev-
els	of	duplication	(Table	1).	Second,	the	initial	quantity	of	input	DNA	
in	a	sample	was	negatively	correlated	with	%GC	content	in	resulting	
assemblies,	for	example,	the	two	samples	in	our	study	that	with	the	
lowest	input	DNA	quantity	also	the	highest	percentage	of	GC	content	
across	all	assembled	contigs	(Table	1).	This	finding	may	reflect	biased	
PCR	 enrichment	 of	 GC-	rich	 exogenous	 microbial	 contamination	 in	
samples	with	low	initial	input	DNA	quantity	(Dabney	&	Meyer,	2012)	
and	 explain	 the	 significantly	 higher	GC	 content	 of	 historic	 samples	
overall.	While	our	SNP	calling	pipeline	and	data	filtering	removed	sites	
potentially	 originating	 from	 nonvertebrate	 sequences	 (although	 see	
further	 discussion	 below),	 we	 nonetheless	 recommend	 researchers	
interested	in	applying	hyRAD	to	historical	specimens	heed	the	recom-
mendations	of	recent	empirical	studies	(Gamba	et	al.,	2016)	to	select	
an	extraction	protocol	suited	to	degraded	DNA	and	maximize	 input	
tissue	quantity	whenever	possible.

4.4 | Geographic and/or taxonomic autocorrelation 
with input DNA type is potentially problematic with 
hyRAD studies

We	 implemented	 rigorous	 and	 conservative	 laboratory	 and	 bioin-
formatic	protocols	 to	 reduce	the	 influence	of	exogenous	DNA	con-
tamination	 and	postmortem	DNA	degradation,	 the	 results	of	which	
we	 summarize	 as	 a	 reference	 for	 future	 studies	 in	Table	2.	Despite	
these	 precautions,	 repeated	DAPC	with	 different	 parameters	 failed	
to	change	a	basic	pattern	where	all	modern	DNA	samples	(n	=	6)	clus-
tered	until	the	chosen	K	value	of	ancestral	populations	was	seven	or	
more	(Figure	5).	Unfortunately,	as	the	close	geographic	proximity	of	
modern	DNA	samples	would	also	 lead	to	this	pattern,	we	could	not	
easily	determine	 from	our	sampling	scheme	 if	 this	pattern	 reflected	
biological	reality	or	whether	factors	correlated	with	sample	type,	such	
as	undetected	microbial	contamination,	DNA	degradation,	and/or	li-
brary	amplification	artifacts,	were	affecting	population	genetic	infer-
ence.	We	 first	 attempted	 to	disentangle	 its	potential	 drivers	during	
PCA	and	DAPC	analyses	 by	 examining	histograms	of	%GC	content	
per	read	for	anomalous	distributions,	but	failed	to	detect	a	significant	
second	peak	indicative	of	contamination	with	exogenous	GC-	rich	mi-
crobes.	We	next	 performed	 linear	 regressions	with	 specificity,	 sen-
sitivity,	 fold	 enrichment,	 specimen	 age,	 and	 input	DNA	 quantity	 as	
predictors	for	each	of	our	first	three	retained	PCs.	From	these	regres-
sion	analyses,	we	 found	significant	correlations	of	all	 variables	with	
PC1,	but	no	other	PCs	 (Table	3).	While	 these	 results	 are	consistent	
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with	 the	 possibility	 that	 biased	 sequencing	 performance	 affected	
population	 genetic	 inference,	 the	 exact	 mechanism	 responsible	 re-
mains	 unclear.	 To	 avoid	 artifacts	 related	 to	 the	 separate	 treatment	
of	 different	 sample	 types,	we	 suggest	 randomizing	 individuals	 from	
both	modern	and	historic	DNA	sources	 throughout	 library	prepara-
tion,	hybridization	capture,	and	sequencing.	Additionally,	we	suggest	
researchers	intending	to	use	hyRAD	in	studies	with	both	modern	and	
historic	 tissue	attempt	 to	avoid	geographic	and	 taxonomic	autocor-
relation	 wherever	 possible	 and	 include	 a	 control	 in	 their	 sampling	
scheme	to	indicate	potential	DNA	input	quality	problems.

4.5 | The phylogeography of S. torotoro reflects 
biogeographic barriers in New Guinea

Our	 DAPC	 results	 are	 consistent	 with	 previous	 studies	 of	 lowland	
avian	phylogeography	 in	New	Guinea,	and	we	 interpret	 them	as	 in-
dependent	 confirmation	 the	 ability	 of	 hyRAD	 to	 reveal	 biologically	
meaningful	patterns.	K-	means	clusters	recovered	for	three	ancestral	
populations	 reflect	broad	trends	 in	codistributed	 taxa	and	expected	
patterns	of	genetic	variation	given	geographic	barriers	and	the	geo-
logic	history	of	New	Guinea	(Figure	5)	(Deiner	et	al.,	2011;	Dumbacher	
&	Fleischer,	2001).	Although	IBD	across	all	samples	was	not	signifi-
cant	 (see	Section	 “3”	 for	details),	 the	 initial	division	of	 samples	 into	
mainland	 eastern	 and	 western	 clusters	 is	 consistent	 with	 both	 the	
primary	latitudinal	axis	of	the	island	and	the	barriers	to	gene	flow	in	
lowland	forest	taxa	presented	by	the	Bewani	Mountains	and	Trans-	
Fly	savannah	region	(Deiner	et	al.,	2011;	Mack	&	Dumbacher,	2007).	
Inclusion	of	Normanby	 Island	 subspecies	S. t. ochracea	 in	 the	west-
ern	New	Guinea	cluster	is	consistent	with	previous	studies	that	have	
reported	genetic	similarity	between	other	taxa	in	far	eastern	and	far	
western	New	Guinea,	such	as	birds	of	the	genus	Pitohui	(Dumbacher	
&	Fleischer,	 2001).	 Samples	 from	 southwest	New	Guinea	 clustered	
with	 those	 from	the	Aru	 Islands,	 suggesting	shared	ancestry	among	
these	currently	allopatric	populations.	This	is	potentially	explained	by	
both	the	 linkage	of	these	 landmasses	during	the	Pleistocene	via	the	
Sahul	Shelf	(Voris,	2000)	and	the	subsequent	emergence	of	previously	
identified	barriers	to	avian	gene	flow	to	the	north,	east,	and	west	in	
the	form	of	 the	Central	Ranges,	 the	Trans-	Fly	Savannah,	and	Aetna	
Bay,	respectively	(Dumbacher	&	Fleischer,	2001;	Deiner	et	al.,	2011;.)	
Our	analysis	 reveals	broad	similarities	between	 the	phylogeography	
of	S. torotoro	and	the	codistributed	lowland	bird	species	Colluricincla 
megarhyncha	 (Deiner	 et	al.,	 2011),	 albeit	 with	 lower	 resolution	 due	
to	 the	 inherent	 limitations	 of	 our	 sampling.	We	 believe	 that	 future	
studies	of	resident	lowland	forest	species	with	similar	ranges	that	use	
hyRAD	or	other	means	of	capturing	nuclear	DNA	markers	will	con-
tinue	to	aid	in	building	a	cohesive	picture	of	the	comparative	phyloge-
ography	of	this	biodiverse	region.
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