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Abstract

We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end
sequence data at 90! coverage using nine libraries with insert lengths ranging from"250 to 9,600 nt and read lengths from 100 to
375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26! 109 nt in length with an N50 length of 3.98! 106 nt.
We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We
examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl
(Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-
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associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-
light-adapted vertebrates.

Key words: nuclear genome, bird, Strigidae, Strigiformes, Aves.

Introduction

The spotted owl (Strix occidentalis) is a large, charismatic in-
habitant of dense forests whose range extends along the
Pacific coast of North America from southwestern British
Columbia to southern California and eastward into the south-
west desert states and Mexico. The northern spotted owl sub-
species, S. o. caurina, inhabits the Pacific Northwest portion of
the S. occidentalis range from British Columbia south along
the west coast to the Golden Gate strait, California. The US
Fish and Wildlife Service listed S. o. caurina as “threatened”
under the Endangered Species Act (ESA) in 1990 (Thomas
et al. 1990) and the owl has been the subject of much eco-
logical research and economic tension. Since its listing under
the ESA, populations have continued to decline (Forsman
et al. 1996, 2011; Dugger et al. 2015; Davis et al. 2016)
despite the increased level of protection. Although it is not
considered a “model species” by most researchers, there is a
considerable amount of demographic and ecological data
available for this species (Courtney et al. 2004), especially in
comparison with other owls, which tend to be less studied
than diurnal birds.

Spotted owl conservation efforts often focus on genetic
challenges, including those relating to small population sizes
and inbreeding, relationships to other population segments,
and potential interbreeding with congeners (Barrowclough
et al. 1999, 2005, 2011; Haig et al. 2001, 2004). A complete
genome assembly could provide many useful tools for con-
servation geneticists, including independent estimates of ef-
fective population size (Ne), tools for identifying and
developing genetic markers such as single nucleotide poly-
morphisms and microsatellites, and data that can provide di-
rect and relatively accurate measures of interbreeding.

The congeneric barred owl (Strix varia), formerly native to
North America east of the Rocky Mountains (Mazur and
James 2000), has invaded western North America in the last
50–75 years and, from British Columbia to southern
California, has become broadly sympatric with the spotted
owl in the last 50 years (Taylor and Forsman 1976; Livezey
2009a, 2009b) and likely poses a threat to the survival of
the northern spotted owl (Forsman et al. 2011; Wiens et al.
2014; Dugger et al. 2015; Diller et al. 2016). In addition to
competing for western forest habitat, barred and spotted
owls interact at the genetic level as they can hybridize and
successfully backcross (Haig et al. 2004; Kelly and Forsman
2004; Funk et al. 2007). Much of our motivation to assemble
the northern spotted owl genome was to provide a resource
to aid those studying the genetics of this owl and related taxa.

Thus, we included analyses of the genome of a barred owl
from eastern North America as a baseline comparison to the
spotted owl. We compared genome-derived estimates of Ne

from both species and calculated FST between them.
Access to high-coverage, relatively complete genomes also

allows researchers to address questions that, without this re-
source, are inaccessible or difficult to answer. For example,
previous work has suggested that owls have evolved an atyp-
ical avian visual system with high numbers of dim-light-
adaptive rod photoreceptors (Fite 1973; Bowmaker and
Martin 1978) and a diminished capacity for color vision
(Bowmaker and Martin 1978; Wu et al. 2016). Whole ge-
nome sequencing can establish what mutation(s) or genomic
rearrangements resulted in their reduced color vision and,
with multiple genomes, one may test whether such mutations
are lineage-specific or inherited from a common ancestor. The
genome assembly of the barn owl (Tyto alba; Aves: Tytonidae)
was available and allowed us to test owl-lineage-based hy-
potheses, but it was one of the lower-coverage, less complete
of the available avian genome assemblies (Zhang, Li B, Li C,
et al. 2014). A complete spotted owl genome, in addition to
providing whole genome data for a representative of
Strigidae, the other of the two families of owls, could also
enable a definitive search for genes involved in nocturnal vi-
sual adaptations and a better understanding of the processes
of mutation that lead to such adaptations.

Materials and Methods

Genome Sample

We collected blood from a captive adult northern spotted owl
(S. o. caurina) at WildCare rehabilitation facility in San Rafael,
California. The captive owl, named Sequoia and referred to
as such hereafter, patient card No. 849, was admitted to
WildCare on 5 June 2005 as an abandoned nestling found
in Larkspur, Marin County, California (CAS:ORN:98821;
table 1). We chose to sequence the genome of this individual
as S. occidentalis is known to hybridize with S. varia (Haig et al.
2004; Kelly and Forsman 2004; Funk et al. 2007) and we
wanted to ensure that we were sequencing the genome of
a nonhybrid, nonintrogressed individual. The first Marin
County S. varia detections occurred in 2003 and researchers
estimated a population size of only three individuals by 2005
(Jennings et al. 2011). First generation hybrid individuals are
phenotypically diagnosable with intermediate plumage char-
acteristics (Hamer et al. 1994). Thus, if Sequoia had any
S. varia genetic material, it would likely have been a first
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generation hybrid and easily diagnosable as such. No plumage
or behavioral features, such as vocalizations, suggested that it
was a hybrid individual.

DNA Isolation

For genomic DNA libraries that required very high molecular
weight DNA, we isolated DNA by using the precipitation
method provided by the Gentra Puregene Kit (Qiagen,
Netherlands) and following the manufacturer‘s protocol.
We also isolated DNA using a column-based method, the
DNeasy Blood & Tissue Kit (Qiagen, Netherlands), and used
this DNA for those libraries where very high molecular weight
was not essential. We assessed the quality and concentration
of all isolated DNA using a Nanodrop 2000c spectrophotom-
eter (Thermo Fisher Scientific, USA), 2100 BioAnalyzer (Agilent
Technologies, USA), Qubit 2.0 Flurometer (Invitrogen, USA),
and by running the DNA on a 1% agarose gel. We deter-
mined that the resulting DNA from both methods had high
molecular weight with most of the DNA comprising frag-
ments >50,000 nucleotides (nt) in length.

Illumina Data

We obtained paired-end Illumina data from nine whole-
genome libraries constructed using a variety of methods
with a range of average insert lengths from 247 to 9,615 nt.
In our library construction we utilized a range of DNA shearing
methods including enzyme-based, ultrasonication, and hydro-
dynamic forces using a Hydroshear DNA Shearing Device
(GeneMachines, USA). We amplified all but one of the librar-
ies using polymerase chain reaction (PCR) and sequenced
them with read lengths from 100 to 375 nt (see supplemen-
tary table S1, Supplementary Material online; supplementary
section 1.1–1.8, Supplementary Material online).

Trimming, Merging, Error-Correction

We trimmed the Nextera mate-pair data using the software
NxTrim version 0.2.3-alpha (O’Connell 2014; O’Connell et al.
2015) (supplementary section 1.9.1, Supplementary Material
online) in order to classify reads of mate pair libraries as true
mate pair reads, paired-end reads, or singleton reads. We
then removed adapters and low quality bases separately for
the resulting mate-pair sequences, paired-end sequences, and
singleton sequences using Trimmomatic version 0.32 (Bolger

et al. 2014) (supplementary section 1.9.2, Supplementary
Material online). We also used Trimmomatic to remove adapt-
ers from all non-mate-pair libraries (supplementary section
1.10.1, Supplementary Material online). In order to test how
various trimming methods affected the assembly outcome,
we trimmed to different thresholds for some of our prelimi-
nary assemblies by changing the Trimmomatic version 0.32
(Bolger et al. 2014) average quality score parameters. We did
not apply the error-correction process to reads trimmed to a
stringent quality threshold. For some preliminary assemblies,
we performed adapter and quality trimming, but did not
merge overlapping paired-end reads (supplementary section
1.13, Supplementary Material online). However, since sub-
stantial portions of the paired-end reads from all of the librar-
ies, except the Nextera700 bp library, were overlapping, for
the sequences that we used to generate our final
assembly we joined overlapping paired reads using BBMap
version 34.00 (Bushnell 2014) (supplementary section
1.10.2, Supplementary Material online). We then performed
quality trimming on the non-mate-pair library data using
Trimmomatic version 0.32 (Bolger et al. 2014) (supplementary
section 1.10.3, Supplementary Material online). Since we
trimmed using the relatively lenient threshold of trimming
the read when the average quality over 4 bp dropped below
quality score (Phred) 17, we next used the k-mer-based error
corrector in the SOAPdenovo2 toolkit, SOAPec version 2.01
(Luo et al. 2012), to correct sequence errors (supplementary
section 1.11, Supplementary Material online). For any read
that became unpaired due to the loss of the paired read we
separately subjected it to the same adapter, quality trimming,
and error-correcting steps as the reads that remained paired
(supplementary section 1.12, Supplementary Material online).

Genome Size

In order to estimate the S. occidentalis nuclear genome size
from our Illumina data, we ran Preqc (Simpson 2014) with the
paired-end sequences from the Nextera700 bp data set (sup-
plementary section 1.14, Supplementary Material online).

Assembly

We assembled the S. occidentalis genome using
SOAPdenovo2 version 2.04 (Luo et al. 2012). In order to de-
termine the optimal assembly parameter options, we per-
formed numerous trial runs experimenting with different k-

Table 1

Specimen Data

Specimen County State Country Date Specimen Institution

CAS:ORN:98821 Marin County CA United States 26 Jun 2005 California Academy of Sciences

CNHM<USA-OH>:ORNITH Hamilton County OH United States 29 Nov 2010 Cincinnati Museum Center

NOTE.—Information regarding the S. o. caurina and S. varia individuals from which we obtained genomic sequences for this study including the county, state, country, and
date of collection for each specimen as well as the specimen code and institution where each specimen is archived.
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mer values and parameters. We utilized the insert size esti-
mated in the output of trial assemblies to refine our estima-
tion of the insert sizes for our libraries and used these refined
values as input into subsequent assembly configuration files
(supplementary table S1, Supplementary Material online).
After optimizing the SOAPdenovo2 assembly options, we
generated fourteen further preliminary assemblies to test
how using differently filtered versions and subsets of our
Illumina sequence data affected the assembly outcome.
We examined how the assembly was affected by trimming
our data to multiple quality thresholds, using or not apply-
ing error correction, not merging or merging our overlap-
ping paired-end data, assembling with different k-mers,
using or not using singleton data, and dropping certain
libraries (supplementary table S2, Supplementary Material
online). We used dupchk (Henderson and Hanna 2016a) to
check for sequence duplication in each sequenced library
and found an elevated level of duplication in the
Hydroshear library data, so we excluded all sequences
from this library from several assemblies (supplementary
section 1.15, Supplementary Material online).

Preliminary Assembly Assessment

In order to compare our preliminary assemblies, we removed
contiguous sequences (contigs) or scaffolds less than or equal
to 300 nt with the intent of removing any unassembled reads
from the assembly. We calculated the contig and scaffold N50
as well as the number of scaffolds in various length classes
using scafN50 (Henderson and Hanna 2016d). We calculated
the total length of the assembly, the percentage of “N” char-
acters in the assembly that represent sequence gaps between
contiguous sequences joined by paired-end or mate-pair data
(% N’s), and the total number of scaffolds using
scafSeqContigInfo (Henderson and Hanna 2016e). We were
conservative in the calculation of these metrics and separated
scaffolds into contigs at each N in the sequence. We then
used CEGMA version 2.5 (Parra et al. 2007) to annotate a
set of highly conserved eukaryotic genes (CEGs) in our assem-
bly and thereby obtain an assessment of the quality and com-
pleteness of each assembly (supplementary section 1.16,
Supplementary Material online).

We found it useful to assess the genome assembly‘s con-
tinuity and completeness at each stage of the assembly pro-
cess. We searched for CEGs using CEGMA to evaluate our
earlier assemblies. However, at this time, one of the CEGMA
tool authors recommends that researchers use BUSCO in
place of CEGMA (Bradnam 2015). Since we used CEGMA
to evaluate our earliest assemblies, we continued to use
CEGMA for continuity. We ran BUSCO on our final assembly
and the results suggested similar completeness as those of
CEGMA.

Determination of Final Assembly

We examined multiple statistics in choosing our final assembly.
We valued high contig and scaffold N50 values, low % N’s in
the sequence, a low total number of scaffolds, larger numbers
of scaffolds longer than 1 mega nucleotide (Mnt), and com-
pleteness as reflected in the number of conserved genes found
by the CEGMA pipeline. We decided that the assembly that
had the best statistics across these categories was assembly 4
(table 2) and proceeded forward with this assembly.

We filled gaps in the assembly using the gap closing tool in
the SOAPdenovo2 toolkit, GapCloser version 1.12-r6 (Luo
et al. 2012). The gap-closed assembly contained many
sequences under 1,000 nt in length, a substantial portion of
which appeared to be unassembled reads. We used
ScaffSplitN50s (Henderson and Hanna 2016c) to compare
statistics describing the continuity of the assembly after re-
moving contigs/scaffolds of lengths 300, 500, and 1,000 nt as
well as when using N blocks of lengths 1, 5, 10, 15, 20, and
25 to separate contigs within scaffolds. We decided to re-
move all contigs and scaffolds <1,000 nt for downstream
analyses and will refer to the resulting assembly as
“StrOccCau_0.2” hereafter (supplementary section 1.18,
Supplementary Material online).

Final Assembly Statistics

We calculated basic statistics on StrOccCau_0.2 using the
“assemblathon_stats.pl” script, which was used for compar-
ison of the Assemblathon 2 genome assemblies (Bradnam
et al. 2013). We used both CEGMA version 2.5 (Parra et al.
2007) and BUSCO version 1.1b1 (Sim~ao et al. 2015a, 2015b)
to annotate sets of CEGs and thereby assess the assembly‘s
completeness (supplementary section 1.19, Supplementary
Material online). We also calculated basic statistics and
ran CEGMA as described earlier for other available avian
genomes, including the barn owl (T. alba) (Zhang, Li,
Gilbert, et al. 2014a; Zhang, Li C, et al. 2014), downy
woodpecker (Picoides pubescens) (Zhang, Li, Gilbert,
et al. 2014b; Zhang, Li C, et al. 2014), zebra finch
(Taeniopygia guttata) (GenBank assembly accession
GCA_000151805.2; Warren et al. 2010), bald eagle
(Haliaeetus leucocephalus) (Warren et al. 2014; Zhang,
Li C, et al. 2014), golden eagle (Aquila chrysaetos)
(GenBank assembly accession GCA_000766835.1; Wesley
Warren et al. 2014), chimney swift (Chaetura pelagica)
(Zhang, Li, Gilbert, et al. 2014c; Zhang, Li C, et al. 2014),
and chicken (Gallus gallus) (GenBank assembly accession
GCA_000002315.3; Warren et al. 2017).

Contamination Assessment

To assess whether any assembled contigs were derived from
contaminant nonvertebrate organisms, we performed a local
alignment of all sequences in StrOccCau_0.2 to a copy of the
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NCBI nucleotide database “nt” (Clark et al. 2016; NCBI
Resource Coordinators 2016) using NCBI’s BLASTþ version
2.3.0 tool BLASTN (Altschul et al. 1997; Camacho et al.
2009). We searched for nonvertebrate hits in the top aligned
sequences using a local copy of the NCBI taxonomy database
(ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy; Clark et al. 2016;
NCBI Resource Coordinators 2016) and GItaxidIsVert
(Henderson and Hanna 2016b). We re-examined those
sequences where any of the five output alignments was an
alignment to a nonvertebrate using the web version of NCBI’s
BLASTþ version 2.4.0 tool BLASTN (Altschul et al. 1997;
Camacho et al. 2009). We used bioawk version 1.0 (Li
2013b) to remove contaminant scaffolds from the assem-
bly and will refer to the resulting assembly version hereaf-
ter as “StrOccCau_1.0.” We calculated basic statistics on
StrOccCau_1.0 using the “assemblathon_stats.pl” script
(Bradnam et al. 2013) (supplementary section 1.20,
Supplementary Material online). We confirmed that no
CEGs were present in the contaminant scaffolds.

Mitochondrial Genome Identification

We searched for any contigs or scaffolds that were assemblies
of the mitochondrial genome, rather than the nuclear ge-
nome by aligning a mitochondrial genome assembly of the
brown wood owl (Strix leptogrammica) (GenBank Accession
KC953095.1; Liu et al. 2014) to StrOccCau_1.0 using NCBI’s
BLASTþ version 2.4.0 tool BLASTN (Altschul et al. 1997;
Camacho et al. 2009). We searched for long alignments to
scaffolds with lengths not greatly exceeding 16,500 nt, the
approximate size of the mitochondrial genomes of other owl

(Aves: Strigiformes) species (Harrison et al. 2004; Liu et al.
2014; Mahmood et al. 2014; Hengjiu et al. 2016). We
extracted the scaffold corresponding to the mitochondrial ge-
nome assembly using bioawk version 1.0 (Li 2013b) and an-
notated it using the MITOS WebServer version 806 (Bernt
et al. 2013) (supplementary section 1.21, Supplementary
Material online). We will refer to the mitochondrial and nu-
clear genome assemblies hereafter as StrOccCau_1.0_mito
and StrOccCau_1.0_nuc, respectively.

Sex Identification

In order to determine the sex of the S. o. caurina individual
that supplied the genetic sample for this genome assembly,
we aligned nucleotide sequences of S. varia chromo-helicase-
DNA binding protein-W (CHD1W) (GenBank Accession
KF425687.1) and chromo-helicase-DNA binding protein-Z
(CHD1Z) (GenBank Accession KF412792.1) to
StrOccCau_1.0 using NCBI’s BLASTþ version 2.4.0 tool
BLASTN (Altschul et al. 1997; Camacho et al. 2009). We
extracted the scaffolds that aligned to the CHD1W and
CHD1Z sequences using bioawk version 1.0 (Li 2013b) and
then used Geneious version 9.1.4 (Kearse et al. 2012;
Biomatters 2016a) to predict the length of a PCR product
resulting from amplification of this region with primers
2550 F and 2718 R (Fridolfsson and Ellegren 1999) (supple-
mentary section 1.22, Supplementary Material online).

Repeat Annotation

We ran our genome through two separate series of repeat
masking steps. The purpose of the first series was to produce

Table 2

Metrics of Preliminary Assemblies

Assembly contig

N50 (nt)

scaffold

N50 (nt)

Total Length

of Assembly (Gnt)

Ns (%) Total Number

of Scaffolds

Number Of

Scaffolds > 1 Mnt

In Length

Partial CEGs Found

by CEGMA

Complete CEGs Found

by CEGMA

1 9,499 3,869,235 1.275 4.77 51,843 292 231 205

2 12,096 3,522,724 1.274 4.40 48,264 295 233 205

3 10,425 4,007,375 1.272 4.88 47,075 0 226 200

4* 13,983 3,919,460 1.275 4.26 47,900 303 235 221

5 10,315 4,164,870 1.272 4.45 46,146 287 232 206

6 9,142 3,780,867 1.275 4.86 51,615 296 230 202

7 9,802 3,478,271 1.274 4.42 54,240 327 233 209

8 12,650 3,665,028 1.271 4.18 43,092 313 231 204

9 12,006 3,587,241 1.271 4.66 44,939 307 226 201

10 12,487 3,586,666 1.271 4.26 44,345 314 232 204

11 14,651 3,917,141 1.276 4.26 50,636 293 234 217

12 14,627 3,728,521 1.276 4.28 50,349 305 234 219

13 14,672 3,917,121 1.276 4.26 50,129 293 234 217

14 13,967 3,431,044 1.300 4.50 127,384 318 238 218

NOTE.—Various continuity and completeness summary statistics for our preliminary assemblies. We removed contigs/scaffolds<300 nt in order to remove unassembled reads
from the assemblies before calculating these statistics. We defined contigs with the very restrictive parameter that each N split a scaffold into a separate contig. “Partial CEGs
found by CEGMA” refers to the number of gene sequences found by CEGMA in the assembly in at least partial completeness out of 248 total CEGs. An asterisk and bolded font
mark the preliminary assembly that we chose to use as the basis for the final assembly.
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a masked genome without masking of low complexity
regions or simple repeats, which we could then use for down-
stream annotation steps. The purpose of the second series
was to obtain an accurate assessment of the total repeat
content of the genome, including low complexity regions
and simple repeats. We first performed a homology-based
repeat annotation of the genome assembly using
RepeatMasker version 4.0.5 (Smit et al. 2013) and the repeat
databases of the DFAM library version 1.3 (Wheeler et al.
2013) and the Repbase-derived RepeatMasker libraries ver-
sion 20140131 (Jurka 1998, 2000; Jurka et al. 2005; Bao
et al. 2015) without masking low complexity regions or simple
repeats. We next performed a de novo modeling of the repeat
elements in the genome using RepeatModeler version 1.0.8
(Smit and Hubley 2015) in order to create a database of re-
petitive regions in our genome assembly. We then further
masked the genome by running RepeatMasker using the
homology-based repeat-masked genome as input and the
repeat database created by our RepeatModeler run and again
not masking low complexity regions or simple repeats. The
output was a twice-masked genome, hereafter
“StrOccCau_1.0_masked.” Finally, we repeated the above
steps to perform a separate homology-based and de novo
masking of the genome with RepeatMasker runs that in-
cluded masking of low complexity regions and simple repeats
in order to obtain an accurate estimate of the total repeat
content of the genome (supplementary section 1.23,
Supplementary Material online).

Gene Annotation

In order to annotate genes in the repeat-masked assembly,
StrOccCau_1.0_masked, we followed the MAKER version
2.31.8 (Cantarel et al. 2008) pipeline as described in
Campbell et al. (2014). As input for protein homology evi-
dence, we provided MAKER the redundant protein set previ-
ously used to annotate 48 avian genomes (Zhang, Li C, et al.
2014). We used the genes found in our CEGMA run to train
the gene prediction tool, Semi-HMM-based Nucleic Acid
Parser or SNAP version 2006-07-28 (Korf 2004). As we inde-
pendently performed repeat masking, we ran MAKER with-
out further repeat masking. We combined all of the output
gene annotations using the MAKER accessory scripts
“fasta_merge” and “gff3_merge” (supplementary section
1.24, Supplementary Material online).

We assigned putative gene functions to the MAKER anno-
tations by comparing the output MAKER protein fasta file to
the Swiss-Prot UniProt release 2016_04 (Consortium 2015)
database using NCBI’s BLAST 2.2.31þ tool “blastp”
(Altschul et al. 1997; Camacho et al. 2009). In order to iden-
tify proteins with known functional domains, we ran
InterProScan version 5.18-57.0 (Jones et al. 2014) on the pro-
tein sequences generated by MAKER. We then filtered tran-
scripts with an Annotation Edit Distance (AED) < 1 and/or a

match to a domain in Pfam, a database of protein families
(Finn et al. 2016), using the script “quality_filter.pl” supplied
in MAKER version 3.00.0 (Cantarel et al. 2008). We compared
the unfiltered and filtered GFF3 files by analyzing the AED
values for all annotations using the script
“AED_cdf_generator.pl” supplied in MAKER version 3.00.0
(Cantarel et al. 2008) and graphed the distribution of values
using Matplotlib pyplot (Hunter 2007) (supplementary fig. S1,
Supplementary Material online). Finally, we used
GenomeTools version 1.5.1 (Gremme et al. 2013) to calculate
annotation summary statistics, including distributions of gene
lengths, exon lengths, number of exons per gene, coding
DNA sequence (CDS) lengths (measured in amino acids),
and intron lengths (supplementary section 1.24,
Supplementary Material online) and graphed these using
Matplotlib pyplot (Hunter 2007) (supplementary figs. S2–S6,
Supplementary Material online).

Alignment

We aligned the filtered versions of all sequences from all li-
braries to StrOccCau_1.0_masked using the Burrows-
Wheeler aligner, BWA-MEM version 0.7.12-r1044 (Li
2013a), and then merged, sorted, and marked duplicate
reads using Picard version 1.104 (http://broadinstitute.
github.io/picard; last accessed October 1, 2016). We then
assessed the genome coverage, duplication level, and other
statistics of each aligned sequence library using Picard version
1.141 (http://broadinstitute.github.io/picard; last accessed
October 1, 2016) (supplementary section 1.25,
Supplementary Material online). In order to obtain an estimate
of the insert size of the mate pair libraries independent of the
N-gaps in the scaffold sequences, we divided scaffolds into
contigs at 25 or more N’s, aligned the mate pair libraries to this
set of contigs using BWA-MEM version 0.7.12-r1044 (Li
2013a), and then calculated insert sizes from these alignments
(supplementary section 1.25, Supplementary Material online).

Microsatellite Analysis

We searched the repeat-masked and unmasked versions of
our assembly for all microsatellite primers that have been
designed from sequencing of the Mexican spotted owl (S.
o. lucida) (Thode et al. 2002) as well as additional primers
that were designed from sequences obtained from other
strigid (Aves: Strigidae) species (Isaksson and Tegelström
2002; Hsu et al. 2003, 2006; Koopman et al. 2004;
Proudfoot et al. 2005), but which have been used in
population-level studies of S. occidentalis (Funk et al. 2008,
2010) and/or have been found to be useful in genetically de-
termining F1 and F2 S. occidentalis ! S. varia hybrids (Funk
et al. 2007). We searched the assembly for 16 pairs of micro-
satellite primer sequences using NCBI’s BLASTþ version 2.4.0
tool BLASTN (Altschul et al. 1997; Camacho et al. 2009) (sup-
plementary section 1.26, Supplementary Material online).
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Barred Owl Divergence

In order to assess the genome-wide divergence of S. occiden-
talis and S. varia, we extracted genomic DNA from preserved
tissue of a S. varia collected in Hamilton County, Ohio
([CNHM<USA-OH>:ORNITH:B41533]; hereafter referred to
as “CMCB41533”; table 1) using a DNeasy Blood & Tissue
Kit (Qiagen). We prepared a whole-genome library with an
average insert length of 466 nt using a Nextera DNA Sample
Preparation Kit (Illumina) and obtained 150 nt paired-end se-
quence data. We performed adapter and quality trimming of
the sequence data using Trimmomatic version 0.32 (Bolger
et al. 2014). We aligned the trimmed sequences to
StrOccCau_1.0_masked using BWA-MEM version
0.7.12-r1044 (Li 2013a) and then merged the alignments,
sorted the alignments, and marked duplicate sequences using
Picard version 1.104 (http://broadinstitute.github.io/picard;
last accessed October 1, 2016). We then calculated alignment
statistics using Picard version 1.141 (http://broadinstitute.
github.io/picard; last accessed October 1, 2016). We used
Genome Analysis Toolkit (GATK) version 3.4-46
UnifiedGenotyper (McKenna et al. 2010; DePristo et al.
2011; Van der Auwera et al. 2013) to call variants using the
S. occidentalis (Sequoia) and S. varia (CMCB41533) BWA-
MEM-aligned, sorted, duplicate-marked bam files as simulta-
neous inputs (supplementary section 1.27, Supplementary
Material online).

We then filtered the variants to exclude indels, sites of low
genotyping quality, sites where the reference individual had a
homozygous alternative allele genotype, and sites with cov-
erage greater than the mean coverage plus five times the
standard deviation, as suggested by the GATK documentation
(https://software.broadinstitute.org/gatk/guide/article? id¼
3225; last accessed October 1, 2016). We used GNU cut
version 8.21 (Ihnat et al. 2013) and GNU Awk (GAWK) ver-
sion 4.0.1 (Free Software Foundation 2012) to calculate Hw,
the mean number of nucleotide differences within S. o. caurina
and S. varia, as well as Hb, the number of nucleotide differences
between the two species, and then used these to estimate the
fixation index (FST) (Hudson et al. 1992), a measure of popula-
tion differentiation (supplementary section 1.27,
Supplementary Material online). We then used an implemen-
tation of the pairwise sequentially Markovian coalescent model,
PSMC version 0.6.5-r67 (Li and Durbin 2011; Li 2015), with
100 rounds of bootstrapping to estimate the effective popula-
tion size (Ne) through time for both S. o. caurina and S. varia
(supplementary section 1.28, Supplementary Material online).

Light-Associated Gene Analyses

We searched our S. o. caurina StrOccCau_1.0 assembly and
the T. alba genome assembly (GenBank Accession
GCA_000687205.1) for the presence of functional
orthologs in nineteen genes that encode proteins with
light-associated functions. These genes encode five visual

pigment proteins (LWS [long wavelength-sensitive opsin],
SWS1 [short wavelength-sensitive 1 opsin], SWS2
[short wavelength-sensitive 2 opsin], Rh1 [rod opsin], Rh2
[rod-like cone opsin]) (Davies et al. 2012); ten nonvisual pho-
topigment proteins (Opn3 [panopsin/encephalopsin], Opn4m
[mammal-like melanopsin], Opn4x [Xenopus-like melanop-
sin], Opn5 [neuropsin], Opn5L1 [neuropsin-like 1], Opn5L2
[neuropsin-like 2], OpnP [pinopsin], RRH [peropsin], RGR [ret-
inal G protein-coupled receptor], OpnVA [vertebrate ancient
opsin]) (Okano et al. 1994; Shen et al. 1994; Soni and Foster
1997; Sun et al. 1997; Blackshaw and Snyder 1999; Halford
et al. 2001; Tarttelin et al. 2003; Bellingham et al. 2006;
Tomonari et al. 2008); three enzymes involved in protection
from UV radiation (EEVS-like, MT-Ox, pOPC1 [photolyase])
(Kato et al. 1994; Osborn et al. 2015); and an enzyme in-
volved in synthesizing red ketocarotenoid pigments (CYP2J19
[carotenoid ketolase]) (Lopes et al. 2016; Mundy et al. 2016).
We queried the genome assemblies of S. o. caurina and T.
alba utilizing in silico probes that encompassed the exons,
introns and 50 and 30 flanking sequences of the above genes
(see supplementary table S3, Supplementary Material online
for details on the probe sequences). We imported the S. o.
caurina genome assembly into Geneious version 9.1.6 (Kearse
et al. 2012; Biomatters 2016b) and used the included version
of the NCBI BLASTþ BLASTn tool (Zhang et al. 2000) to search
for the probes in our assembly. We used the web version of
NCBI BLASTþ version 2.5.0 (Zhang et al. 2000) to align the
probes against the T. alba genome assembly sequences in the
NCBI Whole-Genome-Shotgun (WGS) contigs database.
After recovering matches with our BLAST searches, we used
the Geneious version 9.1.6 implementation of the MUSCLE
aligner (Edgar 2004) to align the BLAST results to the probe
sequences. We then used Geneious version 9.1.6 to manually
adjust the alignments and examine the owl sequences for
inactivating mutations, such as premature stop codons, frame
shift indels (insertions/deletions), and splice site mutations.
When BLAST searches were unsuccessful, we performed
BLAST searches against the discarded < 1,000 nt contig set.
In cases of further negative results, we used synteny data from
Ensembl (version 86; Yates et al. 2016) to search for evidence
of whole gene deletion (supplementary section 1.29,
Supplementary Material online and supplementary table S3,
Supplementary Material online). Specifically, we identified
genes flanking the gene of interest in other vertebrate taxa
with available contiguous genomic sequence through the rel-
evant region, and used BLAST as noted earlier to align the
reference sequences for these flanking genes to the genome
assemblies of S. o. caurina and T. alba. If both flanking genes
occurred on the same contig/scaffold and the intergenic se-
quence was not composed of missing data (N’s), this provided
evidence that the gene of interest had been deleted from the
genome. In order to provide further evidence of gene dele-
tion, we used the web version of NCBI BLASTþ version 2.5.0
blastn tool (Zhang et al. 2000) to align the assembly sequence
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intervening the flanking genes to available sequence data in
the NCBI nucleotide database “nt” (Clark et al. 2016;
NCBI Resource Coordinators 2016) to search for remnant
sequences of untranslated gene regions.

In instances where we discovered evidence of potentially
inactivating mutations in light-associated genes of one or
both owl species, we performed dN/dS ratio (x) analyses to
test whether the owl orthologs displayed evidence of relaxa-
tion of the strength of natural selection. We obtained addi-
tional ortholog sequences for the following nonowl avian
species using the web version of the NCBI BLASTþ version
2.5.0 blastn tool (Zhang et al. 2000) with the discontiguous
megablast option to search the NCBI nucleotide database
“nt” (Clark et al. 2016; NCBI Resource Coordinators 2016):
A. chrysaetos, turkey vulture (Cathartes aura), speckled
mousebird (Colius striatus), cuckoo roller (Leptosomus dis-
color), bar-tailed trogon (Apaloderma vittatum), rhinoceros
hornbill (Buceros rhinoceros), downy woodpecker (P. pubes-
cens), and the northern carmine bee-eater (Merops nubicus)
(see supplementary table S9, Supplementary Material online
for sequence information). After aligning the owl gene
sequences with the outgroup taxa using MUSCLE (Edgar
2004) in Geneious version 9.1.6, we adjusted the alignments
manually and removed all stop codons as well as any codon
positions with questionable homology. We then modeled the
evolution of the genes of interest using the codeml program
from the PAML version 4.8 package (Yang 2007) assuming
the Prum et al. (2015) phylogeny and two separate codon
frequency models (F1X4 and F3X4). We created nested mod-
els and tested for statistically significant differences in model
fits using likelihood ratio tests (parameters included model ¼
0 [one ratio] or 2 [nested models], fix_omega ¼ 0, NSsites ¼
0, see supplementary tables S10 and S11, Supplementary
Material online for additional information). Most models
implemented branch tests, which assumed that x differed
across branches on the phylogeny, but was equal across a
gene. We estimated the foreground x on the Tyto branch
for OpnP, the Strix and Tyto branches for CYP2J19 and Rh2,
and the crown (Strixþ Tyto) and stem Strigiformes branches
for Opn4m. The background x for each gene consisted of the
remaining branches. In a few instances, we implemented
branch-sites tests, which assumed differences in x across
the phylogeny while allowing for different x values across
different portions of a gene (parameters included model ¼
2, fix_omega ¼ 1 [null] or 0 [alternative], omega ¼ 1,
NSsites ¼ 2).

We additionally used the NCBI BLASTþ version 2.5.0 blastn
tool (Zhang et al. 2000) with the discontiguous megablast
option to align a reference Opn4m sequence to fifteen avian
retinal transcriptomes, which included six owl species (Wu
et al. 2016) in NCBI’s Sequence Read Archive (SRA)
(Leinonen et al. 2011; NCBI Resource Coordinators 2016)
(see supplementary section 1.29, Supplementary Material on-
line for additional transcriptome information). We imported

the short reads that aligned into Geneious version 9.1.6
(Kearse et al. 2012; Biomatters 2016b) and mapped them
to the reference sequence using the Geneious “map to refer-
ence” function and trying both the “medium sensitivity/fast”
and “low sensitivity/fastest” settings.

Results

Contamination Assessment

Our search for nonvertebrate sequences in our assembly sug-
gested that our assembly was only very minimally contami-
nated with nonvertebrate sequences. For only nine out of the
8,113 final assembly scaffolds, one of the five top alignments
to the NCBI nucleotide database (Clark et al. 2016; NCBI
Resource Coordinators 2016) was an alignment to a non-
vertebrate sequence. Four of these scaffolds were short, rang-
ing from 1,182 to 2,304 nt, and aligned to Escherichia coli
sequence data. We removed these four scaffolds from the
assembly. We kept the other five scaffolds in the assembly.
The highest BLAST bit-score for scaffold-1085 was for an align-
ment to the telomere region of a human genome with 81%
identity across 53% of the scaffold. The highest BLAST bit-
scores for scaffold-1155 were for alignments to endogenous
retrovirus regions of several vertebrate genomes. Three scaf-
folds (2014, 2160, and 3069) were longer scaffolds that
aligned to vertebrate genome sequences with only small se-
quence portions that aligned to nonvertebrate sequence data;
we did not feel this justified removing them from the assembly.

Mitochondrial Genome Identification

We identified scaffold-3674 as an assembly of the mitochon-
drial genome as it had a 14,649 nt alignment with 89.1%
similarity to the S. leptogrammica mitochondrial genome.
This length was the majority of the 21,628 nt scaffold-3674.
After subtracting a block of 3,984 N’s present in the scaffold,
the length of scaffold-3674 is similar to that of other avian
mitochondrial genomes (Mindell et al. 1997, 1998, 1999;
Guan et al. 2016; Zhang et al. 2016). We were able to anno-
tate all of the standard avian mitochondrial genes, except
ND6 and tRNAPro, which suggests that this assembly of the
mitochondrial genome could be improved.

Genome Size

Our k-mer-based estimation with Preqc yielded an estimated
genome length of 1.29 giga nucleotides (Gnt). This type of
estimation generally underestimates the true genome size as
it collapses k-mers from highly repetitive regions. The total
length of all sequences in our gap-closed assembly was
1.88 Gnt, but this length included all singleton sequences
(many of which were unassembled reads) and N-filled gaps.
After removing all contigs and scaffolds <1,000 nt, the com-
bined total length of all scaffolds was 1.26 Gnt.
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Assembly Statistics

Gap-closing improved the assembly continuity and complete-
ness metrics (tables 3 and 4). Removing shorter length con-
tigs/scaffolds improved the post gap closing assembly metrics
at both the contig and the scaffold level. The unfiltered as-
sembly had a scaffold N50 length of 1.836 Mnt and a contig
N50 length of 81,400 nt. Removing contigs/scaffolds less than
300 nt increased the scaffold and contig N50 lengths over 2!
to 3.916 Mnt and 168,721 nt, respectively, and generated the
greatest relative increase in the other continuity metrics of any
of the filtering options that we tried (supplementary table S4,
Supplementary Material online). The highest scaffold and con-
tig N50 lengths (3.983 Mnt and 171,882 nt, respectively) and
the best other continuity metrics resulted from removing all
contigs and scaffolds <1,000 nt, but this came at the slight
expense of the completeness of the genome (supplementary
table S4, Supplementary Material online; tables 3 and 4). Our
gap-closed genome included complete sequences of 228 and
at least partial sequences of 236 of the 248 CEGMA ortho-
logs. We only lost one of these when we removed contigs and
scaffolds <1,000 nt and retained 228 complete and 235 par-
tial CEGMA orthologs in the filtered assembly (table 4). Except
for the percentage of duplicated orthologs, which was nota-
bly higher as measured by the CEGMA analysis versus the
BUSCO analysis, the results of the CEGMA and BUSCO anal-
yses closely agreed. Both found at least partial sequences of
over 90% of the conserved orthologs (235/248 ¼ 94.76%
CEGMA and 2,815/3,023 ¼ 93.12% BUSCO orthologs) un-
der scrutiny in the final assembly (table 4). Our final assembly
contained 8,113 scaffolds and/or contigs with a scaffold N50
of 3.98 Mnt. The longest scaffold was 15.75 Mnt. The GC
content was 41.31%. The N content was 1.10%.

The contig-level continuity statistics improved substantially
when we allowed for longer blocks of intervening N’s before
demarcating separate contigs (supplementary table S4,
Supplementary Material online). Relative to delineating con-
tigs at every N (contig N50 of 51,301 nt), allowing up to 5 N’s
before demarcating a separate contig yielded an over 3! in-
crease in the contig N50 of 155,200 nt. This was the greatest
relative increase that we saw in the contig N50 length out of
all the intervening N lengths that we tried, (supplementary
table S4, Supplementary Material online). Allowing up to 25
N’s before demarcating a separate contig resulted in the high-
est contig N50 (171.88 kilo nucleotides (knt); supplementary
table S4, Supplementary Material online). In both continuity
and completeness, our assembly compares favorably with
those of the other avian genomes for which we calculated
equivalent metrics (table 5).

Sex Identification

We determined from our assembly that the sequence came
from the genome of a female S. o. caurina. The lengths of the
CHD1 markers on the sex chromosomes were 634 and 1,058

nt on scaffolds 806 and 4429, respectively. These lengths are
in the size range of those amplified from S. nebulosa samples
by previous researchers (600–650 and 1,200 nt for CHD1Z
and CHD1W, respectively) (Fridolfsson and Ellegren 1999)
and suggest that scaffolds 806 and 4429 are sequences
from the Z and W chromosomes, respectively.

Repeat Annotation

The repeat annotation and masking of the genome examined
3,754,965 individual sequences totaling 1,882,109,172 nt.
The homology-based repeat annotation resulted in GC con-
tent estimation of 44.15% and masked 21.02% of the as-
sembly as repetitive. Repeat masking using a de novo model
of the repeat elements estimated that an additional 0.55% of
the assembly was repetitive. Due to the fact that some of the
annotated repetitive elements overlapped, the following re-
peat category percentage values do not exactly sum to the
21.57% total genome repeat content. Interspersed repeat
elements including retroelements, DNA elements (DNA trans-
posons with no RNA intermediate), and unclassified elements
comprised 9.31% of the assembly; of these, retroelements
were the most common, constituting 8.96% of the assembly
(table 6). Non-interspersed repeat elements including small
RNA elements, satellites, simple repeats, and low complexity
repeats comprised 12.33% of the assembly; of these, satellites
were the most common, constituting 9.88% of the assembly.

Gene Annotation

The MAKER pipeline succeeded in annotating all contigs and
scaffolds except one, scaffold-1363, which is 555,526nt long
and failed the annotation pipeline for an unknown reason. The
MAKER pipeline‘s implementation of AUGUSTUS version 3.2.1
(Keller et al. 2011; Stanke 2015) predicted 19,692 proteins and
transcripts ab initio. After quality filtering, we retained 16,718
annotated proteins and transcripts, 5,062 of which were non-
overlapping ab initio predictions of proteins and transcripts.

Annotated gene sequence lengths ranged from 51 to
282,544 nt with a median length of 9,187.50 nt (supplemen-
tary fig. S2, Supplementary Material online). Coding sequence
lengths varied from 51 to 66,303 nt with a median length of
1,137 nt (supplementary fig. S3, Supplementary Material
online). Exon lengths extended to a maximum of 14,832 nt
with a median length of 130 nt (supplementary fig. S4,
Supplementary Material online). Intron lengths ranged from
45 to 57,529 nt with a median length of 910 nt (supplemen-
tary fig. S5, Supplementary Material online). The number of
exons per gene ranged from 1 exon to 142 exons with a
median number of six exons per gene (supplementary
fig. S6, Supplementary Material online).

Alignment

The assembly contained 1,142, 612,682 nonN bases used in
the calculation of the library alignment statistics. After all
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filters, the total mean coverage for the paired and unpaired
data from all of the sequenced libraries aligned to the repeat-
masked genome was 60.43!. The MP11 kb mate-pair library
had the highest proportion of duplicate bases (60.1%) and
the PCR-free library noPCR550 bp had the lowest (0.3%)
(table 7).

Insert sizes of mate pair libraries determined by mapping
quality-filtered reads back to the genome assembly gave
lower inserts than were expected based on bioanalyzer traces.

Whereas the bioanalyzer traces gave evidence that the MP4,
MP7, and MP11 kb libraries had insert lengths of "4.2, 7.1,
and 10.7 knt, respectively, the results from mapping to the
whole genome assembly suggested that the insert lengths
were instead 3.3, 5.9, and 9.6 knt, respectively. We hypoth-
esized that this difference may have been due to the number
of N’s added during scaffolding, we also mapped the sequen-
ces from these libraries to the assembly with all scaffolds
decomposed into their constituent contigs. This yielded

Table 3

Final Assembly Metrics

Assembly Version No Gap-Closing, no Scaffolds,

or Contigs Removed

Gap-Closed, No Scaffolds or

Contigs Removed

Gap-Closed, Scaffolds

and Contigs <1,000 nt Removed

Number of scaffolds 3,754,960 3,754,960 8,108

Total size of scaffolds 1,884,397,264 nt 1,882,081,621 nt 1,255,541,132 nt

Longest scaffold 15,783,852 nt 15,750,186 nt 15,750,186 nt

Shortest scaffold 128 nt 128 nt 1,000 nt

Number of scaffolds > 1 K nt 8,112 (0.2%) 8,095 (0.2%) 8,095 (99.8%)

Number of scaffolds > 10 K nt 1,754 (0.0%) 1,746 (0.0%) 1,746 (21.5%)

Number of scaffolds > 100 K nt 661 (0.0%) 661 (0.0%) 661 (8.2%)

Number of scaffolds > 1 M nt 303 (0.0%) 303 (0.0%) 303 (3.7%)

Number of scaffolds > 10 M nt 9 (0.0%) 9 (0.0%) 9 (0.1%)

Mean scaffold size 502 nt 501 nt 154,852 nt

Median scaffold size 150 nt 150 nt 1,904 nt

N50 scaffold length (L50 scaffold count) 1,843,286 nt (209) 1,836,279 nt (209) 3,983,020 nt (92)

N60 scaffold length (L60 scaffold count) 622,124 nt (370) 619,581 nt (371) 3,012,707 nt (129)

N70 scaffold length (L70 scaffold count) 255 nt (216,251) 255 nt (218,976) 2,162,240 nt (178)

N80 scaffold length (L80 scaffold count) 174 nt (1,110,583) 174 nt (1,113,245) 1,545,070 nt (246)

N90 scaffold length (L90 scaffold count) 143 nt (2,336,958) 143 nt (2,338,577) 618,731 nt (372)

scaffold %GC 42.81% 43.82% 41.31%

scaffold %N 2.89% 0.74% 1.10%

Percentage of assembly in scaffolded contigs 66.4% 65.7% 98.5%

Percentage of assembly in unscaffolded contigs 33.6% 34.3% 1.5%

Average number of contigs per scaffold 1.0 1.0 3.4

Average length of break (>25 Ns)

between contigs in scaffold

311 703 716

Number of contigs 3,929,029 3,774,552 27,252

Number of contigs in scaffolds 179,939 22,372 21,478

Number of contigs not in scaffolds 3,749,090 3,752,180 5,774

Total size of contigs 1,830,109,624 nt 1,868,296,631 nt 1,241,823,123 nt

Longest contig 186,255 nt 1,259,046 nt 1,259,046 nt

Shortest contig 5 nt 128 nt 130 nt

Number of contigs > 1 K nt 123,891 (3.2%) 23,915 (0.6%) 23,915 (87.8%)

Number of contigs > 10 K nt 37,347 (1.0%) 12,373 (0.3%) 12,373 (45.4%)

Number of contigs > 100 K nt 58 (0.0%) 3,909 (0.1%) 3,909 (14.3%)

Number of contigs > 1 M nt 0 (0.0%) 8 (0.0%) 8 (0.0%)

Mean contig size 466 nt 495 nt 45,568 nt

Median contig size 150 nt 150 nt 6,702 nt

N50 contig length (L50 contig count) 7,855 nt (46,856) 81,400 nt (4,678) 171,882 nt (2,057)

N60 contig length (L60 contig count) 3,275 nt (81,600) 33,521 nt (8,121) 134,419 nt (2,876)

N70 contig length (L70 contig count) 254 nt (448,715) 255 nt (254,729) 98,604 nt (3,955)

N80 contig length (L80 contig count) 170 nt (1,346,255) 173 nt (1,148,692) 66,668 nt (5,484)

N90 contig length (L90 contig count) 142 nt (2,548,877) 142 nt (2,367,845) 34,559 nt (8,023)

NOTE.—Assembly (contaminant and mitochondrial sequences removed) metrics before gap-closing,after gap-closing,and after both gap-closing and removal of all contigs
and scaffolds <1,000nt in length. Strings of 25 or more N’s broke scaffolds into contigs.
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average insert sizes of 3.3, 6.0, and 10.0 knt, which suggest
some potential for improving N gap lengths, but that the N
stretches in the scaffolds are good approximations of the
lengths of missing, intervening sequences.

Microsatellite Analysis

We found 15 out of the 16 pairs of microsatellite primers for
which we searched in the genome assembly (table 8). We
found loci 4E10, 4E10.2, and Oe149 on scaffold-11. The dis-
tance from the forward 4E10.2 primer to the forward 4E10
primer is 12,172 nt in our assembly, which confirms the char-
acterization of the loci 4E10 and 4E10.2 as linked within 40 kb
by the original authors who described these loci using sequen-
ces obtained from the same cosmid (Thode et al. 2002). The
reverse 4E10 primer is 717,153 nt distant from the forward
Oe149 primer. The remaining primer pairs aligned to separate
assembly scaffolds (table 8).

Barred Owl Divergence

We estimated the nuclear genome-wide nucleotide diversity
(Hw) of S. o. caurina as 2.008 ! 10%4 and that of S. varia as
2.352 ! 10%3. We estimated the genome-wide nucleotide

diversity between S. o. caurina and S. varia (Hb) as 7.042 !
10%3 and calculated an FST of 0.819.

PSMC Analysis

Our pairwise sequentially Markovian coalescent (PSMC)
model analyses suggested that the Ne of both S. o. caurina
and S. varia was substantially higher in the past and has been
in decline since "100,000 or 80,000 years before present,
respectively (fig. 1). The estimated peak Ne of S. o. caurina
was more than an order of magnitude lower than that of S.
varia ("20,000 and 250,000 for S. o. caurina and S. varia,
respectively). The most recent estimate that the PSMC analysis
provided for the Ne of S. o. caurina was also more than an
order of magnitude lower than that of S. varia ("4,000 and
50,000 for S. o. caurina and S. varia, respectively).

Light-Associated Gene Analyses

Seven of the nineteen genes encoding proteins with light-
associated functions that we examined displayed evidence
of inactivation or whole gene deletion in one or both owl
species (supplementary table S3, Supplementary Material on-
line; Hanna et al. 2017). We found no BLAST alignments of

Table 4

Summary of Conserved Ortholog Searches

Assembly Draft. No Gap-Closing,

Contigs/Scaffolds

< 300 nt Removed

Draft. Gap-Closed,

No Removal of Small

Contigs/Scaffolds

Final. Gap-Closed,

Contigs/Scaffolds

<1,000 nt Removed

Final. Gap-Closed,

Contigs/Scaffolds

<1,000 nt Removed

Method CEGMA CEGMA CEGMA BUSCO

Total conserved orthologs examined 248 248 248 3,023

Complete orthologs (% of total) 221 (89.11%) 228 (91.94%) 228 (91.94%) 2,605 (86.17%)

At least partial orthologs (% of total) 235 (94.76%) 236 (95.16%) 235 (94.76%) 2,815 (93.12%)

Duplicated orthologs (% of total) 92 (37.10%) 83 (33.47%) 99 (39.92%) 46 (1.52%)

Missing orthologs 13 (5.24%) 12 (4.84%) 13 (5.24)% 208 (6.88%)

NOTE.—Comparison of the number of conserved orthologous genes found in the final assembly (gap-closed,contigs/scaffolds <1,000 nt removed) using the CEGMA and
BUSCO tools. In order to illustrate the effect of gap-closing and removal of small fragments on assembly completeness metrics,also included are the results of CEGMA gene
searches conducted on two draft versions of the final assembly where we either did not perform gap-closing and removed contigs/scaffolds< 300 nt or performed gap-closing
and did not remove any small contigs/scaffolds.

Table 5

Comparative Statistics of Avian Genomes

Species Common name Scaffold

N50 (nt)

No. Scaffolds/

Contigs

Contig

N50 (nt)

Length

(Gnt)

Ns (%) Complete

CEGs (% of 248)

Partial

CEGs (% of 248)

S. o. caurina Northern Spotted Owl 3,983,020 8,108 171,882 1.26 1.10 228 (91.94%) 235 (94.76%)

T. alba Barn Owl 51,873 166,092 19,113 1.14 1.02 144 (58.06%) 198 (79.84%)

P. pubescens Downy Woodpecker 2,086,781 85,828 29,578 1.17 3.72 196 (79.03%) 216 (87.10%)

T. guttata Zebra Finch 62,374,962 37,095 38,644 1.23 0.75 192 (77.42%) 214 (86.29%)

H. leucocephalus Bald Eagle 669,725 346,419 10,218 1.26 3.97 217 (87.50%) 240 (96.77%)

A. chrysaetos Golden Eagle 9,230,743 1,141 215,151 1.19 1.07 226 (91.13%) 238 (95.97%)

C. pelagica Chimney swift 3,839,435 60,234 33,918 1.13 4.02 191 (77.02%) 222 (89.52%)

G. gallus Chicken 82,310,166 23,474 2,905,620 1.23 0.96 226 (91.13%) 237 (95.56%)

NOTE.—Comparative statistics of our S. o. caurina assembly with those of a selection of other avian genome assemblies.
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SWS1 to either the S. o. caurina or the T. alba assembly.
However, the genes flanking SWS1 in zebra finch (T. guttata)
and human (Homo sapiens), FLNC (Filamin-C) and CALU
(Calumenin) (Ensembl version 86; Yates et al. 2016), are
both present in the S. o. caurina genome assembly, but
they are located on different scaffolds. Without increased
genomic continuity, it is difficult to discern whether

chromosomal rearrangement has occurred or whether this
is a case of simple gene deletion. Recent searches in crocodil-
ian (Crocodilia) genomes similarly found FLNC and CALU on
separate contigs with SWS1 missing from the assemblies
(Emerling 2017a), which suggests that this may be a prob-
lematic region to assemble. NCBI’s Eukaryotic Genome
Annotation (EGA) pipeline did not find FLNC and CALU in

Table 6

Repetitive Element Summary

Type Level 1 Type Level 2 Type Level 3 Type Level 4 Number of Elements Element Total

Length (nt)

Assembly

Portion (%)

Total interspersed repeats 175,287,790 9.31

Total retroelements 727,006 168,672,903 8.96

Retroelement SINE 40,360 4,770,020 0.25

Retroelement SINE ALU 53 6,194 0.00

Retroelement SINE MIR 15,510 1,558,420 0.08

Retroelement Penelope 169 35,110 0.00

Retroelement Total LINEs 486,310 115,604,290 6.14

Retroelement LINE LINE1 622 58,117 0.00

Retroelement LINE LINE2 3,116 317,864 0.02

Retroelement LINE L3/CR1 28,122 5,153,289 0.27

Retroelement LINE CRE/SLACS 0 0 0.00

Retroelement LINE L2/CR1/Rex 452,030 109,807,316 5.83

Retroelement LINE R1/LOA/Jockey 0 0 0.00

Retroelement LINE R2/R4/NeSL 131 44,590 0.00

Retroelement LINE RTE/Bov-B 15 3,492 0.00

Retroelement LINE L1/CIN4 98 23,441 0.00

Retroelement Total LTR elements 200,336 48,298,593 2.57

Retroelement LTR BEL/Pao 0 0 0.00

Retroelement LTR ERV_classI 983 122,219 0.01

Retroelement LTR ERV_classII 400 54,854 0.00

Retroelement LTR ERVL 436 91,660 0.00

Retroelement LTR ERVL-MaLRs 51 4,838 0.00

Retroelement LTR Gypsy/DIRS1 111 14,921 0.00

Retroelement LTR Retroviral 197,967 47,947,799 2.55

Retroelement LTR Ty1/Copia 0 0 0.00

Total DNA elements 37,526 5,628,486 0.30

DNA element En-Spm 0 0 0.00

DNA element hAT-Charlie 418 28,220 0.00

DNA element hobo-Activator 4,235 719,417 0.04

DNA element MuDR-IS905 0 0 0.00

DNA element PiggyBac 0 0 0.00

DNA element Tc1-IS630-Pogo 806 141,663 0.01

DNA element TcMar-Tigger 528 39,074 0.00

DNA element Tourist/Harbinger 9,255 958,360 0.05

DNA element Other (Mirage, P-element,Transib) 0 0 0.00

Rolling-circles 0 0 0.00

Unclassified interspersed repeats 6,225 986,401 0.05

Total noninterspersed repeats 1,907,394 232,038,709 12.33

Small RNA 12,051 1,645,166 0.09

Satellites 1,261,021 185,995,538 9.88

Simple repeats 564,508 40,568,395 2.16

Low complexity repeats 69,814 3,829,610 0.20

NOTE.—Summary of the repeat elements found during two rounds of repeat masking (homology-based followed by denovo-model-based masking). Depending on the type
of repeat element, we provide information at different category summary levels. We use the “Type level” column headings to organize these categories.
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the T. alba genome assembly (NCBI T. alba Annotation
Release 100; NCBI Accession GCF_000687205.1), but the ab-
sence of these genes in the assembly may be due to low
assembly quality (Zhang, Li B, Li C, et al. 2014).

SWS2 and LWS are adjacent on the same chromosome in
the Carolina anole (Anolis carolinensis) and African clawed
frog (Xenopus laevis) genome assemblies and are flanked by
MECP2 (methyl-CpG binding protein 2) in A. carolinensis and
X. laevis, AVPR2 (arginine vasopressin receptor 2) in X. laevis,
and TEX28 (testis expressed 28) in A. carolinensis (Ensembl
version 86; Yates et al. 2016). We did not obtain BLAST align-
ments to SWS2 or LWS for the T. alba assembly and NCBI’s
EGA pipeline did not find MECP2, AVPR2, or TEX28 (NCBI T.
alba Annotation Release 100; NCBI Accession
GCF_000687205.1), which suggests that this portion of the
genome, like the SWS1 region, may be challenging to assem-
ble. Although we found SWS2 and LWS in our S. o. caurina
assembly, we only obtained partial coding sequences with
elevated GC content of 66.9% and 68.0%, respectively.
Our S. o. caurina assembly contained a partial SWS2 exon 1
sequence as well as complete exon 2 and 3 sequences with all
three exons found on two separate scaffolds (scaffolds 4153
and 7110). The sequences of these exons on the two scaffolds
were 100% identical except for one difference in exon 3.
Given the high sequence similarity and the recovery of the
same portions of the SWS2 coding region, these duplicate
sequences are likely an artifact of the assembly process and
do not indicate gene duplication.

SWS2, LWS, Rh1, and Rh2 in S. o. caurina and Rh1 in T.
alba showed no evidence of potentially inactivating muta-
tions. However, Rh2 in T. alba displayed a 29 nt deletion in
exon 1, single premature stop codons in both exons 2 and 3,
and a 2 nt deletion in exon 4. Our modeling of the sequence
evolution of Rh2 in S. o. caurina and T. alba yielded evidence
that selection has become relaxed in T. alba (x¼ 0.22–0.37; P
< 0.00001) relative to other avian taxa (x ¼ 0.03–0.06),
which is consistent with pseudogenization of this gene. A
branch test of S. o. caurina also displayed evidence of relaxed
selection on Rh2 with an elevated x (0.16–0.21; P < 0.05)
relative to the background. Our branch-sites test evaluated
whether there was indication of positive selection across a
subset of sites, but it did not yield any evidence that the ele-
vated x was due to adaptive evolution. We did find nine
missense mutations in S. o. caurina that were not found in
any of the non-owl avian species, but none of these were at
known conserved sites (Carleton et al. 2005), which suggests
that they have not resulted in a loss of function.

We were unable to recover OpnP in our S. o. caurina as-
sembly, but together on the same scaffold we found the
genes that flank OpnP in the chicken (G. gallus) and the col-
lared flycatcher (Ficedula albicollis) genome assemblies, TEX14
(testis expressed sequence 14) in G. gallus and DOC2B (dou-
ble C2 domain beta) in G. gallus and F. albicollis (Ensembl
version 86; Yates et al. 2016). Our BLAST of the sequenceTa
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intervening TEX14 and DOC2B in our S. o. caurina assembly
revealed similarity (8% query coverage, 82% identity) with
the 50 untranslated region of G. gallus OpnP. Together, these
provide strong evidence of whole gene deletion of OpnP in S.
o. caurina. OpnP in T. alba is a pseudogene with numerous
inactivating mutations, including the following: a start codon
mutation (ACA), 13 nt deletion, 2 nt insertion, and 1 nt dele-
tion in exon 1, a 1 nt deletion in exon 2, a 21 nt deletion of the
intron 3-exon 4 boundary, a 7 nt deletion and 2 nt deletion in
exon 4, and a 1 nt deletion in exon 5. We assembled sequen-
ces from outgroup taxa and confirmed that these mutations
are unique to T. alba. Our dN/dS ratio analyses strongly sug-
gested relaxed selection on the T. alba branch (x ¼ 0.51–0.7;
P< 0.00001) compared with purifying selection on the back-
ground branches (x ¼ 0.11–0.18).

Opn4m displays evidence of inactivation in both S. o. caur-
ina and T. alba, with both species sharing a 4 nt deletion in
exon 8. Additionally, S. o. caurina has a premature stop codon
in exon 8 and T. alba possesses a splice donor mutation (GT to
AT) in intron 11. Comparisons with outgroup taxa confirmed
that these mutations were unique to owls, but also demon-
strated that other bird species have putative inactivating
mutations in this gene, including the golden eagle (A. chrys-
aetos) with a premature stop codon in exon 9; speckled
mousebird (C. striatus) with a 1 nt deletion in exon 9, splice
donor mutation in intron 9 (GT to TT), and premature stop
codon exon 11; cuckoo roller (L. discolor) with a splice donor
mutation in intron 10 (GT to GA); and rhinoceros hornbill (B.
rhinoceros) with a start codon mutation (ATG to CTG). We
performed dN/dS ratio analyses after removing all exons that
contained putative inactivating mutations. The results indi-
cated that the average x for the crown owl branches is ele-
vated (x ¼ 0.45; P < 0.01) relative to the background (x ¼
0.19), which does not meet the expectation of neutral evolu-
tion predicted if the shared 4 nt deletion led to a loss of func-
tion of Opn4m. Branch-sites tests yielded evidence of positive
selection on some portions of the gene for both owl branches,
but this signal was not a significantly better fit than the null.
Our BLAST of an Opn4m sequence to fifteen bird retinal
mRNA short read databases, which included data from six
owl species, yielded alignments to all fifteen transcriptomes.
Further investigation of these sequences in Geneious revealed
evidence of different isoforms of Opn4m. When we used
lower sensitivity alignment settings, the assemblies of mapped
sequences generally terminated after exon 8 (the exon with
the 4 nt deletion), suggesting that this is an abundant tran-
script isoform. However, using higher sensitivity alignment
settings generated assemblies of multiple transcripts with dis-
tinct sequences at some of the exon–intron boundaries.

Finally, CYP2J19 displays evidence of inactivation in both
owl species. S. o. caurina has a 1 nt insertion and 2 nt deletion
in exon 9. As Emerling (2017c) described, the T. alba assembly
contains a premature stop codon in each of exons 1, 5, and 6
as well as a 5 nt deletion in exon 3. Both the S. o. caurinaTa
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(x ¼ 0.33–0.34; P < 0.05) and T. alba (x ¼ 0.68–0.72; P <
0.0001) branches have elevated dN/dS ratios compared with
the background (0.15–0.16), which is consistent with the hy-
pothesis that these mutations have led to a loss of function of
CYP2J19.

Discussion

Genome Characterization

Direct comparison of assembly metrics between our S. o.
caurina assembly and seven other avian genome assemblies,
including the avian model organisms chicken (G. gallus) and
zebra finch (T. guttata), revealed that the S. o. caurina assem-
bly is in the top tier of genomes in both continuity and com-
pleteness (table 5). Only the golden eagle (A. chrysaetos),
zebra finch, and chicken genomes had better continuity

statistics as measured by scaffold and contig N50s. We com-
pared the relative completeness of the assemblies by search-
ing for a set of 248 CEGs using CEGMA. Of the assemblies
that we compared, we found the highest number of com-
plete conserved gene sequences in our S. o. caurina assembly
(228 complete CEGs), surprisingly surpassing even the chicken
genome (226 complete CEGs). In terms of at least partially
complete sequences of conserved genes, our S. o. caurina
assembly contained only two fewer than the chicken genome
(235 vs. 237 partial CEGs). Our assembly is both more com-
plete and more contiguous than that of T. alba, the only other
owl assembly currently available (S. o. caurina vs. T. alba as-
sembly statistics include 235 vs. 198 CEGs at least partially
present, scaffold N50 of "4.0 ! 106 nucleotides vs. "5.2 !
104 nucleotides, and contig N50 of "1.7 ! 105 nucleotides
vs. "1.9 ! 104 nucleotides).

FIG. 1—Demographic history of Strix occidentalis caurina and Strix varia with bootstrap replicates. (Panel A) depicts the demographic history estimated

for S. o. caurina. (Panel B) depicts the demographic history estimated for Strix varia.
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The number of annotated genes and the percentage of
interspersed repeat elements in our S. o. caurina assembly
are similar to those seen in other avian genomes (Zhang, Li
B, Li C, et al. 2014). The number of annotated genes in our
assembly (16,718 genes) was very similar to the number in the
high-quality chicken and zebra finch genomes (16,516 and
17,471 genes, respectively) (Zhang, Li B, Li C, et al. 2014).
These values were at the upper end of the range seen in the
analysis of the gene annotations of 48 avian genomes
(13,454–17,471 genes) (Zhang, Li B, Li C, et al. 2014).
Similar to the number of annotated genes, the percentage
of interspersed repeat elements in our S. o. caurina assembly
(9.31%) closely matched the percentage found in the chicken
and zebra finch genomes (9.82% and 9.68%, respectively)
(Zhang, Li B, Li C, et al. 2014). These values fell at the higher
end of the range seen in the analysis of 48 avian genomes
(4.11–9.82%) if one excludes the downy woodpecker (P.
pubescens) outlier (22.15%) (Zhang, Li B, Li C, et al. 2014).

Our searches for CEGs with both our CEGMA and BUSCO
analyses revealed that our S. o. caurina assembly lacks only 5–
7% of conserved orthologs, which is similar to the 4.4% we
observed to be absent in the assembly of the chicken ge-
nome. Genome size data estimated from flow cytometry
measurement of red blood cells exist for two S. occidenta-
lis congeners. The nuclear genome lengths of the tawny
owl (Strix aluco) and the great gray owl (S. nebulosa) are
"1.56 Gnt (De Vita et al. 1994; Dole!zel et al. 2003) and
1.61 Gnt (Dole!zel et al. 2003; Vinogradov 2005), respec-
tively, which average to 1.59 Gnt. As compared with this
average, the shorter total length of our scaffolded S. o.
caurina assembly ("1.26 Gnt) suggests that 21% of the
full genome sequence length of S. o. caurina remains
unrepresented in this assembly. This is similar to the
"17.8% unrepresented sequence in the 1.19 Gnt golden
eagle genome, assuming a genome size of "1.45 Gnt
(Dole!zel et al. 2003; Nakamura et al. 1990). The unrepre-
sented sequence may consist largely of difficult-to-
assemble repetitive content (Wicker et al. 2005; Yamada
et al. 2004). These data illustrate that the S. o caurina
assembly is comparable to the top tier of avian genomes
assembled to date, but, as with all avian genomes, there is
still improvement to be made.

Previous work on Strix karyotypes suggests that S. occiden-
talis likely has a typical avian karyotype of 2n ¼ 80–82
(Renzoni and Vegni-Talluri 1966; Hammar 1970; Belterman
and Boer 1984; Rebholz et al. 1993;). Assuming 1n ¼ 41
chromosomes, the 8,100 scaffolds in our assembly yield
"198 scaffolds per chromosome. However, this number
may not be a very meaningful estimate of the number of
sequence blocks per chromosome as Strix shares with other
birds the feature of possessing chromosomes in a wide range
of sizes with the majority of the karyotype ("35 of the 41
chromosomes) comprised of microchromosomes and just 6
macrochromosomes (Rebholz et al. 1993).

The SOAPdenovo2 version 2.04 (Luo et al. 2012) assembler
does not remove short sequences, which were mostly unin-
corporated reads. We removed all contigs and scaffolds
<1,000 nt for our final assembly and used the resulting as-
sembly in downstream analyses. We felt that removal of these
small sequences was warranted as sequences shorter than
1,000 nt are unlikely to be useful in assessing synteny or
gene structure. Some commonly used assemblers, such as
ALLPATHS-LG, do not output contigs/scaffolds <1,000 nt
(Gnerre et al. 2011). Indeed, the authors of the ALLPATHS-
LG description removed contigs/scaffolds <1,000 nt in the
comparisons of their assembler‘s functionality with other ge-
nome assemblers (Gnerre et al. 2011). Removal of these short
sequences post assembly allowed us to better compare across
assemblies and to effectively analyze what was actually
assembled.

Our CEGMA results suggest that we lost minimal genome
information (only 1 out of 248 conserved orthologs examined)
by removing assembly contigs/scaffolds <1,000 nt. This vali-
dated our decision to remove these short sequences and con-
firmed that it was likely not worth the increase in processing
time to retain these small genome fragments in downstream
analyses. Additionally, larger genome assembly fragments
have greater structural information.

In order to calculate the contig N50 statistic, scaffolds must
be decomposed into constituent contigs. We explored how
the criteria for splitting scaffolds into contigs affected assem-
bly statistics. As one might expect, allowing longer blocks of
N’s before breaking a scaffold into contigs resulted in better
continuity statistic values. We chose to allow up to 25 N’s
before separating contigs in our final assembly metric calcu-
lations as this was the default used in the
“assemblathon_stats.pl” script used for calculating assembly
statistics of the Assemblathon 2 genome assemblies
(Bradnam et al. 2013). Indeed, even though the
“assemblathon_stats.pl” script allowed the user to set a
flag to change the number of N’s that would separate con-
tigs, our examination of the code revealed that the 25 N’s was
actually hard-coded into the script and overrode any value set
by the user.

We found that our assemblies had better continuity metrics
when we did not include all of our available short read data in
the assembly. Of particular benefit was the exclusion of the
Hydroshear data set, which displayed a high level of sequence
duplication. This suggests that checking libraries for evidence
of elevated levels of duplication prior to an assembly could be
beneficial.

We found that all of the microsatellite primer pairs previ-
ously used for S. occidentalis genetic studies (Funk et al. 2007,
2008, 2010) mapped at reasonable distances from each other
and predicted PCR products in normal microsatellite size
ranges. We found no evidence of linkage except for three
primer pairs that mapped to the same scaffold. The other
11 primer sets that we were able to align to the assembly

Hanna et al. GBE

2538 Genome Biol. Evol. 2522–2545 doi:10.1093/gbe/evx158 Advance Access publication August 23, 2017
Downloaded from https://academic.oup.com/gbe/article-abstract/9/10/2522/4091607/Northern-Spotted-Owl-Strix-occidentalis-caurina
by guest
on 12 October 2017



mapped to separate scaffolds. A chromosome-level genomic
sequence assembly would help further evaluate the indepen-
dence of these loci.

Genome-Wide Divergence of Spotted Owl and Barred Owl

As S. o. caurina and S. varia are separate species, we expected
a high genome-wide FST estimate, but our estimate is elevated
even relative to values calculated for other congeneric bird
species pairs (Toews et al. 2016). It is difficult to interpret
this value; however, as the genome-wide nucleotide diversity
within S. varia is "10-fold greater than that of S. o. caurina.
We hypothesize that a difference in Ne for the two species is
likely the largest contributor to this difference in nucleotide
diversity, especially as the Marin S. o. caurina population of
which our S. o. caurina genome is a sample is known to be an
isolated population of this extinction-threatened species
(Barrowclough et al. 2005). Following from the 10-fold differ-
ence in nucleotide diversity of the two species’ genomes, our
PSMC analyses suggested that the Ne of S. varia was consis-
tently approximately an order of magnitude greater than that
of S. o. caurina over the past 100,000 years. The PSMC anal-
yses also suggested that the Ne of both S. o. caurina and S.
varia has been in decline over the past tens of millennia, but
we caution that precise timing of the past maximum Ne for
both species and its subsequent decline is highly dependent
on the values chosen for the substitution rate and generation
time, which likely require further optimization for these Strix
species and for owls in general.

Light-Associated Gene Analyses

We have provided genomic evidence of inactivation and de-
letion of genes with light-associated functions in two species
of predominantly nocturnal owls. Ancestral birds likely pos-
sessed tetrachromatic color vision (Borges et al. 2015) char-
acterized by four cone photoreceptor opsin pigments with
distinct spectral sensitivities, but it appears that owls have a
reduced capacity to discriminate colors. Our genomic data for
the color vision system in owls are largely consistent with the
results of a retinal microspectrophotometry study (Bowmaker
and Martin 1978), retinal transcriptome analyses (Wu et al.
2016), and a recent genomic study of avian visual opsins
(Borges et al. 2015). Specifically, the absence of SWS1, which
absorbs light in the violet/ultraviolet (Davies et al. 2012), in
both S. o. caurina and T. alba is corroborated by the absence
of a violet/ultraviolet-sensitive photopigment in S. aluco
(Bowmaker and Martin 1978), the lack of SWS1 retinal
mRNA transcripts in a tytonid and species from all three of
the strigid subfamilies (Wu et al. 2016), and a genomic anal-
ysis of T. alba that also failed to find SWS1 in the genome
assembly (Borges et al. 2015). In our S. o. caurina assembly we
were able to locate, albeit on separate scaffolds, the genes
that flank SWS1 in other avian taxa, but not SWS1 itself. More
data is needed to confirm whether there are SWS1 remnants

in the S. o. caurina and T. alba genomes and their absence in
the current assemblies is simply due to assembly incomplete-
ness or errors. However, together the data accumulated to
date strongly indicate that owls lack SWS1, potentially since
their most recent common ancestor, leading to a reduced
capacity for color discrimination. The loss of SWS1 is highly
unusual in Aves (Borges et al. 2015). Other than in owls, it has
only been inferred to have been lost in the nocturnal North
Island brown kiwi (Apteryx mantelli) (Le Duc et al. 2015). In
contrast, it has occurred repeatedly in nocturnal, subterra-
nean, and marine mammals (Jacobs 2013; Emerling et al.
2015) as well as in the crocodilians, a lineage believed to
have undergone an extensive period of nocturnal adaptation
(Walls 1942; Emerling 2017a).

The inactivation of Rh2 in T. alba was previously suggested
(Borges et al. 2015) and we confirmed this result with the two
premature stop codons and two frameshift indels we found in
the gene sequence. Additionally, there is evidence that the
retinal transcriptome of a congener, T. longimembris, does
not include Rh2 transcripts (Wu et al. 2016). The intact
copy of Rh2 in our S. o. caurina genome, the transcription
of this gene in multiple strigid species (Wu et al. 2016), and
the expression of a cone pigment consistent with the Rh2
protein in S. aluco (Bowmaker and Martin 1978) all support
the hypothesis that Rh2 was lost uniquely in the tytonid line-
age and not across Strigiformes (Wu et al. 2016). Among
avian species, Rh2 is also inactivated in the kiwi A. mantelli
(Le Duc et al. 2015) as well as in the Adélie (Pygoscelis adeliae)
and emperor penguins (Aptenodytes forsteri) (Li et al. 2014;
Borges et al. 2015), two marine predators that frequently feed
at great depths under dim-light conditions. A third penguin
species, the Humboldt penguin (Spheniscus humboldti) lacks
cones with a peak absorbance typical of Rh2 (Bowmaker and
Martin 1985). The loss of Rh2 occurred in several other ver-
tebrate groups that are thought to have experienced long
periods of inhabiting dim-light environments, including stem
Mammalia (Walls 1942; Davies et al. 2007; Gerkema et al.
2013), Crocodilia (Emerling 2017a), and snakes (Reptilia:
Serpentes) (Castoe et al. 2013; Vonk et al. 2013; Sim~oes
et al. 2015; Emerling 2017b).

The apparent absence of SWS2 and LWS in T. alba is likely
due to the assembly being incomplete. These genes are in
tandem in A. carolinensis and X. laevis, but the avian assem-
blies in Ensembl version 86 (Yates et al. 2016) contain SWS2
and LWS on separate small contigs and not adjacent to other
genes. This is consistent with our recovery of only partial
SWS2 and LWS in S. o. caurina and previous difficulties in
assembling full SWS2 and LWS sequences in dozens of other
avian genomes (Borges et al. 2015; Le Duc et al. 2015), which
may be attributable to the high GC content of these genes
(Borges et al. 2015). Researchers recovered intact SWS2 and
LWS mRNAs in the retinal transcriptomes of five strigid and
one tytonid species (Wu et al. 2016) and have demonstrated
that the tawny owl (S. aluco) expresses photoreceptor
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pigments with peak absorptions consistent with SWS2 and
LWS (Bowmaker and Martin 1978), suggesting that SWS2
and LWS are likely retained in owls.

Together, the confluence of data from genomics, tran-
scriptomics, and retinal microspectrophotometry suggests
that SWS1 was likely lost in stem Strigiformes, which resulted
in a reduction in the degree of color vision from tetrachro-
macy to trichomacy by the time of the last common ancestor
of owls. Rh2 became subsequently inactivated in Tytonidae,
resulting in further reduced capacity for color discrimination
(dichromacy) in this family. Owls, kiwis, and penguins repre-
sent the few known avian taxa that deviated from the ances-
tral avian state of tetrachromatic color vision, likely as a result
of an increased dependence on highly sensitive rod photo-
receptors for foraging in low-light conditions.

The inactivation (T. alba) or deletion (S. o. caurina) of the
gene encoding pinopsin (OpnP) may have resulted in the loss
of direct photosensitivity of the pineal gland in owls. Pinopsin
is expressed in the pineal gland of birds (Okano et al. 1994)
and likely regulates the daily rhythms of melatonin synthesis.
Owls have a relatively small and simple pineal with little re-
sponse to differences in luminance (Taniguchi et al. 1993),
which suggests that, similar to mammals, the gland may re-
ceive photic input indirectly from the eyes (Falc"on et al. 2009).
OpnP is also inactivated in the penguins P. adeliae and A.
forsteri (Li et al. 2014), but it otherwise appears intact across
Aves (Borges et al. 2015). Notably, the loss of pinopsin has
also occurred in the historically dim-light-environment-
inhabiting Mammalia, Crocodilia, and Serpentes (Walls
1942; Gerkema et al. 2013; Emerling 2017a, 2017b).
Crocodilians appear to lack a pineal gland entirely (Roth
et al. 1980), whereas mammals have a pineal gland that
has moved from a more superficial to a deeper position in
the brain (Falc"on et al. 2009), presumably resulting in a loss of
photosensitivity. Together these data suggest that the loss of
direct photosensitivity of the pineal gland is a common theme
in amniotes (Tetrapoda: Amniota) that experience minimal
exposure to light.

Although we found several putative inactivating mutations
in Opn4m, these are unlikely to have led to complete loss of
function. The shared 4 nt mutation in T. alba and S. o. caurina
suggests that it was inherited from the common ancestor of
Strigiformes. If this mutation disrupted the function of
Opn4m in the common ancestor of Strigiformes, then this
gene sequence should have been evolving neutrally in all of
the descendant lineages. However, Strigidae and Tytonidae
split "45 million years ago (Prum et al. 2015) yet each ortho-
log has only accumulated a single additional putative inacti-
vating mutation, both of which are downstream of exon 8.
Our dN/dS ratio analyses of crown owl branches yielded an x
< 1 (x ¼ 0.45), which is consistent with the hypothesis that
Opn4m remains functional in owls. Furthermore, we were
able to assemble Opn4m from the retinal mRNA sequences
from six additional owls (five strigid and one tytonid), which

indicates that Opn4m is still being transcribed in the eyes of
those species. We found evidence of multiple Opn4m iso-
forms in the avian retinal transcriptome sequences and the
genomic sequences of several other avian taxa possessed pu-
tative inactivating mutations. These potentially inactivating
mutations were almost all distributed on or after exon 8.
Notably, when we used the lowest sensitivity setting of the
Geneious aligner to map Opn4m BLAST hits from the avian
retinal transcriptomes, we primarily obtained assembled
sequences that terminated after exon 8. Previous work has
found multiple Opn4m isoforms in vertebrates (Verra et al.
2011; Hughes et al. 2012). Our results suggest loss of some of
these isoforms in owls and other birds. Opn4m is involved in
entraining circadian rhythms in mammals via the pineal gland,
in part, as well as in regulating pupil diameter (Hankins et al.
2008). Given the diminished importance of the pineal gland in
owls, alteration of the circadian function of Opn4m is a
possibility.

CYP2J19 has recently been implicated as the carotenoid
ketolase responsible for synthesizing red carotenoids in birds
(Lopes et al. 2016; Mundy et al. 2016; Emerling 2017c).
Carotenoids, in addition to being involved in pigmentation
of avian skin and feathers, are located in oil droplets anterior
to the photosensitive outer segments of cone photoreceptors.
These oil droplets fine-tune color vision by absorbing shorter
wavelengths and reducing spectral overlap between cone vi-
sual pigments (Vorobyev 2003). However, these droplets also
reduce the number of photons that reach cone photorecep-
tors and, therefore, may be less beneficial under dim-light
conditions. Among owls, S. aluco, Athene noctua (little
owl), and Asio flammeus (short-eared owl) are known to pos-
sess red cone oil droplets, whereas Strix uralensis (Ural owl),
Bubo scandiacus (snowy owl), and T. alba lack them (Erhard
1924; Yew et al. 1977; Bowmaker and Martin 1978; Gondo
and Ando 1995). In S. aluco, the red oil droplets are limited to
<1% of the cone photoreceptor population (Bowmaker and
Martin 1978), which is an extremely low proportion com-
pared with other avian species (Bowmaker 1980; Partridge
1989). Additionally, there is recent evidence that CYP2J19 is
inactivated in T. alba, is transcribed as a pseudogene in the
retinal transcriptome of Asio otus (long-eared owl), and is
transcribed at low levels in five other owl species as compared
with the level observed in diurnal outgroup avian taxa
(Emerling 2017c). Among non-owl Aves, the absence of red
cone oil droplets has only been reported in two penguin spe-
cies, S. humboldti (Bowmaker and Martin 1985) and
Aptenodytes patagonicus (Gondo and Ando 1995). Among
nonowls, CYP2J19 is inactivated in the penguins P. adeliae
and A. forsteri as wells as in the kiwi A. mantelli (Emerling
2017c), which all forage under dim-light conditions. The
CYP2J19 pseudogene reported here for S. occidentalis caurina
provides further evidence that owls have repeatedly been los-
ing red carotenoid oil droplets in parallel, potentially to max-
imize retinal sensitivity in their predominantly nocturnal niche.
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Perhaps what is most notable about the loss of light-
associated genes in Strigiformes is not the fact that it has
occurred, but that it has not ensued to the same extent as
in other historically dim-light-adapted vertebrates. Of the
nineteen genes we examined, all but one (CYP2J19) were
likely present in the common ancestor of amniotes
(Gerkema et al. 2013; Osborn et al. 2015; Twyman et al.
2016). Excluding CYP2J19, mammals lost nine (Mammalia:
Marsupialia and Monotremata) to ten of these genes
(Mammalia: Placentalia) during a hypothesized nocturnal
or mesopic bottleneck (Walls 1942; Heesy and Hall 2010;
Davies et al. 2012; Gerkema et al. 2013) and crocodilians
lost seven during a similarly hypothesized period of dim-
light adaptation (Walls 1942; Emerling 2017a). Among
squamates (Reptilia: Squamata), snakes lost seven of these
genes during a putative nocturnal and/or fossorial period
early in their history, whereas the largely nocturnal geckos
lost six (Walls 1942; Emerling 2017b). As for owls, tytonids
have lost three of the light-associated genes we examined
(SWS1, Rh2, OpnP), whereas strigids have lost only two
(SWS1, OpnP).

Conclusions

We report the first genome of a member of Strigidae, the
largest family of owls. We anticipate that this draft whole
genome assembly will be useful to those studying the genet-
ics, demography, and conservation of the spotted owl and
related taxa. It will be of particular use in genetic identification
of hybrid spotted/barred owls (S. occcidentalis! varia) and in
ascertaining the frequency of hybridization between these
two species in the forests of western North America. The
phylogenetic position of owls within Neoaves is at the base
of a large clade containing mousebirds (Coliiformes), cuckoo-
rollers (Leptosomiformes), trogons (Trongoniformes), hornbills
(Bucerotiformes), woodpeckers (Piciformes), and kingfishers
(Coraciiformes) (Jarvis et al. 2014; Prum et al. 2015). This
placement of owls suggests that our spotted owl genome
assembly will be useful in genomic studies that span a sub-
stantial component of avian morphologic diversity and life
history strategies.

Despite potentially more than 45 million years of dim-light
specialization in Strigiformes, owls have retained a diverse
array of nonvisual opsin pigments and mechanisms to protect
against ultraviolet photo-oxidative damage. Although tyto-
nids have a reduced color vision capacity that is similar to
ancestral mammals, crocodilians, and snakes, strigids have
retained trichromatic color vision akin to that of humans.
Many light-associated gene functions have been maintained
in owls, perhaps enabling activities during daylight, a time
when most owls are presumed to be generally inactive. It
appears that what many consider the quintessential nocturnal
birds are not as independent of light as are other nocturnal or
crepuscular amniote lineages.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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1 Supplementary Material and Methods 

1.1 Nextera350nt library 

1.1.1 We intended this library to be a Nextera-sheared library with a small insert size. We 

isolated DNA using a Gentra Puregene Kit (Qiagen) following the protocol entitled 

“Protocol: DNA Purification from Tissue Using the Gentra Puregene Tissue Kit” 

(Qiagen). We used 50 ng of the DNA to prepare a genomic library using a Nextera DNA 

Sample Prep Kit (Illumina-compatible) (Epicentre). After tagmentation, we cleaned the 

reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We amplified the 

reaction for 5 cycles of PCR using a Nextera DNA Sample Prep Kit (Illumina-

compatible) (Epicentre) and the Nextera PCR Enzyme (Epicentre). We then cleaned the 

reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We used a LabChip 

XT DNA 750 Assay Kit on a LabChip XT (PerkinElmer) automated nucleic acid 

fractionation system to select library fragments in the size range of 375-600 nt, which, 

after subtracting the 141 nt of adapters, corresponds to an average fragment size of 346.5 

nt. We performed a final PCR using 5 µL Klentaq LA 10X Buffer with MgCl (Sigma-

Aldrich), 1 µL 12.5 µM dNTPs, 1 µL each of two Illumina-adapter-compatible primers at 

10 µM, 1 µL KlenTaq LA DNA Polymerase Mix (Sigma-Aldrich), 5 µL library off of 

LabChip, and water to make a 50 µL reaction volume. We ran the PCR at 94°C for 2 

min; then 5 cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and 

extension at 72°C for 3 min; and we performed a final extension at 72°C for 5 min. We 

removed the PCR products after the final extension and and then cleaned them using a 

DNA Clean & Concentrator -5 kit (Zymo Research). We obtained one lane of 100 nt 

paired-end data using a TruSeq PE Cluster Kit v2-cBot-HS kit and a TruSeq SBS v2-HS 
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kit on a HiSeq 2000 (Illumina) and a second lane of 100 nt paired-end data using a 

TruSeq PE Cluster Kit v3-cBot-HS kit and a TruSeq SBS v3-HS kit on a HiSeq 2000 

(Illumina). 

1.2 Nextera700nt library 

1.2.1 We attempted to construct a Nextera-sheared library with a moderate insert size. We 

isolated DNA using a Gentra Puregene Kit (Qiagen) and used 50 ng to prepare a genomic 

library using a Nextera DNA Sample Preparation Kit (Illumina). After tagmentation, we 

cleaned the reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We 

amplified the reaction for 5 cycles of PCR using a KAPA Library Amplification kit 

(KAPA Biosystems) and then cleaned the reaction with a DNA Clean & Concentrator -5 

kit (Zymo Research). We used a BluePippin (Sage Science) to select library fragments in 

the size range of 734-934 nt, which, after subtracting the 134 nt of adapters, corresponded 

to selecting an average insert size of 700 nt. We performed a real-time PCR (rtPCR) 

using a KAPA Real-Time Library Amplification Kit (KAPA Biosystems) on a CFX96 

Touch Real-Time PCR Detection System (Bio-Rad) to amplify the library. We amplified 

the library with 6 cycles PCR and then cleaned the PCR products with a DNA Clean & 

Concentrator -5 kit (Zymo Research). We lastly assessed the library fragment size 

distribution with a 2100 BioAnalyzer (Agilent Technologies) and the concentration of 

double-stranded DNA material with a Qubit 2.0 Flurometer (Invitrogen). We obtained 

one lane of 150 nt paired-end data sequenced on a HiSeq 2500 (Illumina) in rapid mode. 

1.3 Nextera550nt library 

1.3.1 We aimed to construct a Nextera-sheared library with overlapping reads, which could be 

merged into long fragments. We isolated DNA using a Gentra Puregene Kit (Qiagen) and 
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used 50 ng to prepare a genomic library using a Nextera DNA Sample Preparation Kit 

(Illumina). After tagmentation, we cleaned the reaction with a DNA Clean & 

Concentrator -5 kit (Zymo Research). We amplified the reaction for 5 cycles of PCR 

using a KAPA Library Amplification kit (KAPA Biosystems) and then cleaned the 

reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We then used a 

BluePippin (Sage Science) to select library fragments in the size range of 634-709 nt, 

which, after subtracting the 134 nt of adapters, corresponded to selecting an average 

insert size of 537.5 nt. We assessed the library fragment size distribution with a 2100 

BioAnalyzer (Agilent Technologies). We cleaned the size-selected product with 0.6X 

Agencourt AMPure XP (Beckman Coulter) magnetic beads to remove adapter dimer of 

approximately 250 nt in size. We then performed a real-time PCR (rtPCR) using a KAPA 

Real-Time Library Amplification Kit (KAPA Biosystems) on a CFX96 Touch Real-Time 

PCR Detection System (Bio-Rad) to amplify the library. We amplified the library with 8 

cycles PCR and then cleaned the PCR products with a DNA Clean & Concentrator -5 kit 

(Zymo Research). We lastly assessed the library fragment size distribution with a 2100 

BioAnalyzer (Agilent Technologies) and the concentration of double-stranded DNA 

material with a Qubit 2.0 Flurometer (Invitrogen). We obtained one lane of 300 nt paired-

end data sequenced using a MiSeq Reagent Kit v3 on a MiSeq (Illumina). We obtained a 

second lane of 375 nt read 1 and 225 nt read 2 for a total of 600 nt of paired-end read data 

sequenced using a MiSeq Reagent Kit v3 on a MiSeq (Illumina). 

1.4 noPCR550nt library 

1.4.1 We extracted genomic DNA from blood using a DNeasy Blood & Tissue Kit (Qiagen). 

We sheared 4,460 ng genomic DNA in 130 µL in a microTUBE AFA Fiber Pre-Slit 
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Snap-Cap tube (Covaris) using a M220 focused-ultrasonicator (Covaris) targeting 550 nt 

as the center of the fragment distribution. We used peak incident power 50 W, 20% duty 

factor, 200 cycles per burst, and 45 s treatment time at 20°C. We then removed small 

fragments and concentrated the sheared material using a DNA Clean & Concentrator -5 

kit (Zymo Research). We next constructed a genomic library by using a TruSeq DNA 

PCR-Free Library kit (Illumina) and following the manufacturer’s protocol, including the 

use of bead-based size selection to remove large and small DNA fragments in succession 

to target a mean fragment size of 550 nt. We assessed the concentration of double-

stranded DNA material in the final library with a Qubit 2.0 Flurometer (Invitrogen). 

1.5 900ntPCR library 

1.5.1 We extracted genomic DNA from blood using a DNeasy Blood & Tissue Kit (Qiagen). 

We sheared 4,580 ng genomic DNA in 130 µL in a microTUBE AFA Fiber Pre-Slit 

Snap-Cap tube (Covaris) using a M220 focused-ultrasonicator (Covaris) targeting 900 nt 

as the center of the fragment distribution. We used peak incident power 50 W, 5% duty 

factor, 200 cycles per burst, and 70 s treatment time at 20°C. We then removed small 

fragments and concentrated the sheared material using a DNA Clean & Concentrator -5 

kit (Zymo Research). We next constructed a genomic library by using a TruSeq DNA 

PCR-Free Library kit (Illumina) and following the manufacturer’s protocol, except that 

we only performed a bead-based size selection to remove small fragments and not large 

fragments. We used a 0.45X bead to sample ratio in order to eliminate fragments smaller 

than approximately 700 nt. Following A-tailing and prior to adapter ligation, we took 

10% of the sample (by volume) and separated it from the noPCR aliquot for use in a 

PCR-amplified library. We ligated adapters to these two aliquots separately and cleaned 
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the finished ligations with a DNA Clean & Concentrator -5 kit (Zymo Research). We 

then only went forward with the aliquot for use in a PCR-amplified library. We used a 

BluePippin (Sage Science) to select library fragments in the size range of 800-1100 nt, 

which, after subtracting the 121 nt of adapters, corresponded to selecting an average 

insert size of 829 nt. We next cleaned the eluted material with a DNA Clean & 

Concentrator -5 kit (Zymo Research) and then performed real-time PCR (rtPCR) using a 

KAPA Real-Time Library Amplification Kit (KAPA Biosystems) on a CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad) to amplify the library. We amplified the 

library with 11 cycles PCR and then cleaned the PCR products with 1X Agencourt 

AMPure XP (Beckman Coulter) magnetic beads. We lastly assessed the library fragment 

size distribution with a 2100 BioAnalyzer (Agilent Technologies) and the concentration 

of double-stranded DNA material with a Qubit 2.0 Flurometer (Invitrogen). 

1.6 Hydroshear library 

1.6.1 We isolated DNA using a Gentra Puregene Kit (Qiagen) and used a Hydroshear DNA 

Shearing Device (GeneMachines) to shear 25 µg in DNA in 100 µL volume with 30 

cycles of shearing using speed code 3. We checked the sheared DNA on a 1% agarose gel 

and saw that fragments had been sheared between 400-1000 nt. We additionally 

mechanically sheared the DNA by performing 15 passes through a 28 gauge x 1/2 inch 

needle attached to a 1 cc U-100 Insulin Syringe (Becton, Dickinson and Company). We 

performed end-repair using 4266 ng sheared DNA in an End-It DNA End-Repair Kit 

(Epicentre). We incubated the reaction at room temperature for 45 minutes and then 

inactivated the enzyme by heating to 72°C for 10 minutes followed by cleaning with a 

DNA Clean & Concentrator -5 kit (Zymo Research). We then added 3’ A tails in a 
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reaction with 2 µL 10X NEBuffer 2, 0.5 µL 100 mM dATP (Invitrogen), 1 µL Klenow 

Fragment (3’→5’ exo-) (NEB), and 16.5 µL cleaned end-repaired product. We incubated 

for 45 min at 37°C and then 20 min at 75°C to inactivate the enzyme. We cleaned the 

reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We then ligated 

Illumina-compatible adapters using 1 µL 10X Fast-Link Ligation Buffer (Epicentre), 1 

µL 10 mM ATP (Epicentre), 5 µL of end-repaired DNA (0.7835 µg), 2 µL of annealed 

Illumina-compatible adapters at 10 µM (Integrated DNA Technologies), and 1 µL Fast-

Link DNA Ligase (Epicentre) for 10 µL total reaction volume. We incubated the ligation 

reaction overnight at 16°C and then used 1.5X Agencourt AMPure XP (Beckman 

Coulter) magnetic beads to clean the ligase reaction and remove any extra adapters. We 

performed a PCR using 10 µL Klentaq LA 10X Buffer with MgCl (Sigma-Aldrich), 2 µL 

12.5 µM dNTPs, 2 µL each of two Illumina-adapter-compatible primers at 10 µM, 2 µL 

KlenTaq LA DNA Polymerase Mix (Sigma-Aldrich), half of the cleaned ligase reaction 

in 10 µL, and water to make a 100 µL reaction volume. We ran the PCR in two 50 µL 

aliquots at 94°C for 5 min; then 2 cycles of denaturation at 94°C for 30 s, annealing at 

55°C for 30 s, and extension at 68°C for 3 min; and we performed a final extension at 

68°C for 5 min. We removed the PCR products after the final extension and and then 

cleaned them using a DNA Clean & Concentrator -5 kit (Zymo Research). We used a 

LabChip XT DNA 750 Assay Kit on a LabChip XT (PerkinElmer) automated nucleic 

acid fractionation system to select library fragments in the size range of 600-700 nt. We 

performed a final PCR using 5 µL Klentaq LA 10X Buffer with MgCl (Sigma-Aldrich), 1 

µL 12.5 µM dNTPs, 1 µL each of two Illumina-adapter-compatible primers at 10 µM, 1 

µL KlenTaq LA DNA Polymerase Mix (Sigma-Aldrich), 5 µL library off of LabChip, 
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and water to make a 50 µL reaction volume. We ran the PCR at 94°C for 2 min; then 17 

cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C 

for 3 min; and we performed a final extension at 72°C for 5 min. We removed the PCR 

products after the final extension and and then cleaned them using a DNA Clean & 

Concentrator -5 kit (Zymo Research). We next assessed the library fragment size 

distribution with a 2100 BioAnalyzer (Agilent Technologies) and the concentration of 

double-stranded DNA material with a Qubit 2.0 Flurometer (Invitrogen). 

1.7 noPCR550nt, 900ntPCR, and Hydroshear libraries 

1.7.1 We pooled the barcoded noPCR550nt, 900ntPCR, and Hydroshear libraries equimolarly 

and we obtained 350 nt read 1 and 250 nt read 2 for a total of 600 nt of paired-end read 

data from one lane (approximately ⅓ of one lane per library) using a 600-cycle MiSeq 

Reagent Kit v3 on a MiSeq (Illumina). 

1.8 MP4kb, MP7kb, and MP11kb libraries 

1.8.1 We constructed and sequenced three large-insert mate-pair libraries. We isolated DNA 

using a Gentra Puregene Kit (Qiagen) and sent 41.3 µg to GENEWIZ 

(www.genewiz.com). We requested barcoded mate-pair libraries with insert sizes of 4 kb, 

6 kb, and 11 kb constructed using the Nextera Mate Pair Sample Preparation Kit 

(Illumina). GENEWIZ followed the procedure detailed in the Nextera Mate Pair Sample 

Preparation Guide (Illumina, Part # 15035209 Rev. C, January 2013). Traces obtained 

using a 2100 BioAnalyzer (Agilent Technologies) showed the centers of the distributions 

of the sheared fragmentsthat went into the circularization step of the three mate-pair 

libraries as 4.2 kb, 7.1 kb, and 10.7 kb. GENEWIZ pooled the three libraries equimolarly 
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and we obtained one lane (approximately ⅓ of one lane per library) of 100 nt paired-end 

data sequenced on a HiSeq 2000 (Illumina). 

1.9 Trimming - long-insert mate-pair data 

1.9.1 We trimmed the Nextera mate-pair data using NxTrim version 0.2.3-alpha (O’Connell 

2014; O’Connell et al. 2015), which required BOOST version 1.57.0 

(http://www.boost.org). When running NxTrim, we used the “--preserve-mp” flag to 

prefer mate pair reads as output even if paired-end reads would be longer. NxTrim 

utilizes the position of the junction identifier sequence in Nextera mate-pair data to 

classify reads of mate pair libraries as true mate pair reads, paired-end reads, or singleton 

reads. 

1.9.2 We trimmed adapters and low quality bases separately for the resulting mate-pair data, 

paired-end reads, and singleton reads using Trimmomatic version 0.32 (Bolger et al. 

2014). We trimmed adapters using options “ILLUMINACLIP:<fasta of Illumina adapter 

sequences >:2:30:10”. We removed low quality bases from the beginning and end of the 

reads using the following options: LEADING:3 TRAILING:3 to remove bases below 

Phred 3. We trimmed off low quality sequence portions using: SLIDINGWINDOW:4:17, 

which trimmed the read when the average quality over 4 basepairs dropped below Phred 

17. Finally, we trimmed reads less than 36 basepairs in length using “MINLEN:36”. 

1.10 Trimming - short-insert paired-end data 

1.10.1 We first trimmed adapters from all non-mate-pair libraries using Trimmomatic version 

0.32 (Bolger et al. 2014). We used the ILLUMINACLIP function with the following 

options: <fasta of Illumina adapter sequences >:2:30:10. 
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1.10.2 Since substantial portions of the paired-end reads from all of the libraries, except the 

Nextera700nt library were overlapping, we joined overlapping paired reads using the 

BBMerge tool in the BBMap tool suite version 34.00 (Bushnell 2014). We merged 

overlapping reads using the options "minoverlapinsert=110 mininsert=110 strict=t" for 

the datasets Nextera350nt lane 1 and Nextera350nt lane 2, We used the options 

"minoverlapinsert=400 mininsert=400 strict=t" for the datasets Nextera550nt lane 1, 

Nextera550nt lane 2, noPCR550nt, and PCR900nt, which had longer read lengths. 

1.10.3 We then performed quality trimming using Trimmomatic version 0.32 (Bolger et al. 

2014). We removed low quality bases from the beginning and end of the reads using the 

options “LEADING:3 TRAILING:3” to remove bases below Phred 3. We trimmed off 

low quality sequence portions using “SLIDINGWINDOW:4:17”, which trimmed the read 

when the average quality over 4 basepairs dropped below Phred 17. Finally, we trimmed 

reads less than 36 basepairs in length using “MINLEN:36”. 

1.11 Error-correction 

1.11.1 Since we trimmed using a moderately low quality threshold, we used the k-mer-based 

error corrector in the SOAPdenovo2 toolkit, SOAPec version 2.01 (Luo et al. 2012), to 

correct sequence errors. We first used the KmerFreq_HA tool to create a k-mer frequency 

spectrum with default options except “-k 27 -L 600”, which indicate that we used a k-mer 

size of 27 for creating the frequency spectrum and the maximum read length was 600 nt. 

We then used the Corrector_HA tool along with the k-mer frequency spectrum that we 

created to correct all of our trimmed reads using default options except “-k 27 -r 36”, 

which indicate that we used a k-mer size of 27 for the error correction and kept trimmed 

reads as short as 36 nt. 
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1.12 Single-end data 

1.12.1 In each stage of the trimming, merging, and error-correction process, some reads 

previously paired became unpaired due to the loss of their paired read in a trimming step. 

We handled the single-end reads separate from the paired reads and subjected them to the 

same adapter, quality trimming, and error-correcting steps as the reads that remained 

paired. We used all of these single read sets in the final assembly. 

1.13 Read processing variation for some preliminary assemblies 

1.13.1 For a trim level of an average Phred 7 or 28, the only difference from the methodology 

described above was that we trimmed off low quality sequence portions using 

Trimmomatic with the parameter “SLIDINGWINDOW:4:7” or 

“SLIDINGWINDOW:4:28”, respectively.  

1.13.2 We did not apply the error-correction process to reads trimmed to an average Phred 28.  

1.13.3 For some preliminary assemblies, we did not merge overlapping paired-end reads. This 

entailed leaving out the BBMerge step described above, but still performing adapter and 

quality trimming as noted. 

1.14 Genome size 

1.14.1 Genome size data estimated from flow cytometry measurement of red blood cells exist 

for two S. occidentalis congeners of, S. aluco and S. nebulosa. Strix aluco has a C-value 

of 1.59 pg (De Vita et al. 1994), which is approximately 1.56 Gnt (Doležel et al. 2003). 

Strix nebulosa has a C-value of 1.65 pg (Vinogradov 2005), which is approximately 1.61 

Gnt (Doležel et al. 2003).  

1.14.2 We ran Preqc (Simpson 2014), a module within SGA version 0.10.14 (Simpson & Durbin 

2010, 2016), which used Google SparseHash library version 2.0.2 (google-
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sparsehash@googlegroups.com 2012), zlib version 1.2.8 (Gailly & Adler 2013) and 

BamTools version 2.4.0 (Barnett et al. 2011, 2015) requiring CMake version 3.2.3 

(Hoffman & Martin 2003; Kitware 2015), and on the 150 nt paired-end reads from the 

Nextera700nt dataset to estimate the genome size. Preqc estimated the genome size by 

sampling 20,000 reads and counting the frequency of k-mers of length 31 nt while 

applying a correction for sequencing errors. 

1.15 Assembly 

1.15.1 We used SOAPdenovo2 version 2.04 (Luo et al. 2012) to assemble the genome. We 

performed numerous trial runs experimenting with different k-mer values and parameters. 

We utilized the insert size estimated in the output of initial, trial assemblies to refine our 

estimation of the insert sizes for our libraries and used these refined values as input into 

subsequent assembly configuration files (Table S1). We settled on using the default 

parameters other than the options “SOAPdenovo-127mer all -N 1500000000 -K 23 -m 

127 -k 65 -d 1 -R -F”. These options indicate that we used the 127 k-mer version of the 

assembler and ran the assembly using multiple k-mer sizes starting at 23 and ending with 

a maximum of 127, we gave an estimated genome size of 1.5 Gnt, we allowed reads as 

small as 65 nt to map to contigs during scaffolding, we ignored singleton k-mers, we tried 

to resolve repeats with reads, and we attempted to fill gaps in scaffolds. 

1.15.2 In our configuration files for all of the preliminary assemblies, we used the default 

minimum alignment lengths between a read and contig (32 for paired-end reads, 35 for 

mate-pair reads) and the default minimum pair number cutoffs (3 for paired-end reads, 5 

for mate-pair reads). 
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1.15.3 We used dupchk (Henderson & Hanna 2016a), which utilized the first and last 21 nt of 

each read as a read fingerprint, to check for sequence duplication in each sequenced 

library. 

1.16 Preliminary assembly assessment 

1.16.1 In order to compare our preliminary assemblies, we removed contigs / scaffolds <= 300 

nt in order to remove any unassembled reads from the assembly. We calculated the contig 

and scaffold N50 as well as the number of scaffolds in various length classes using 

scafN50 (Henderson & Hanna 2016d). We calculated the total length of the assembly, the 

% Ns, and the total number of scaffolds using scafSeqContigInfo (Henderson & Hanna 

2016e). We were conservative and separated scaffolds into contigs at each N in the 

sequence, which is the default option for scafSeqContigInfo (Henderson & Hanna 

2016e).  

1.16.2 We then used CEGMA version 2.5 (Parra et al. 2007), which required GeneWise from 

the Wise2 version 2.2.3-rc7 package (Birney; Birney et al. 2004), HMMER version 3.0 

(http://hmmer.org), geneid version 1.4.4 (Guigó 1998; Blanco et al. 2011), and NCBI’s 

BLAST+ version 2.2.25 (Altschul et al. 1997; Camacho et al. 2009), to annotate a set of 

highly conserved eukaryotic genes in our assembly and thereby obtain an assessment of 

the quality and completeness of each assembly. In order to install CEGMA’s GeneWise 

dependency, we followed the source code modification recommendations documented by 

Markus Grohme (http://korflab.ucdavis.edu/datasets/cegma/ubuntu_instructions_1.txt) 

and the Homebrew Science GeneWise formula 

(https://github.com/Homebrew/homebrew-science/blob/master/genewise.rb).  

1.17 Determination of final assembly 
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1.17.1 We examined multiple statistics in choosing our final assembly. We valued high contig 

and scaffold N50 values, low % Ns in the sequence, a low total number of scaffolds, 

larger numbers of long scaffolds, and completeness as reflected in the number of 

conserved genes found by the CEGMA pipeline. We decided that the assembly that had 

the best statistics across these categories was assembly 4 (Table 2) and we went forward 

with this assembly as our final assembly. 

1.18 Gap closing 

1.18.1 We found that using the "-F" flag to fill gaps using the SOAPdenovo2 version 2.04 (Luo 

et al. 2012) de novo assembler was ineffective at gap filling during the assembly. We 

then filled gaps using the gap closing tool in the SOAPdenovo2 toolkit, GapCloser 

version 1.12-r6 (Luo et al. 2012), with the default options other than "-l 600" to specify 

that our longest read length was 600 nt. The program output a warning stating that the 

maximum supported read length was 155 nt and that it would use that setting for the 

analysis. We assumed that the program just used the first 155 nt of reads with a total 

length exceeding 155 nt. 

1.18.2 The gap-closed assembly contained many contigs and/or scaffolds under 1000 nt in 

length, a substantial portion of which appeared to be unassembled reads. We used 

ScaffSplitN50s (Henderson & Hanna 2016c) to compare the continuity statistics resulting 

after removing contigs / scaffolds of lengths 300, 500, and 1,000 nt as well as when using 

N blocks of lengths 1, 5, 10, 15, 20, and 25 to separate contigs within scaffolds. Based on 

these results, we removed all contigs and scaffolds less than 1000 nt for downstream 

analyses. 

1.19 Final assembly stats 
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1.19.1 We used CEGMA version 2.5 (Parra et al. 2007), which required GeneWise from the 

Wise2 version 2.2.3-rc7 package (Birney; Birney et al. 2004), HMMER version 3.0 

(http://hmmer.org), geneid version 1.4.4 (Guigó 1998; Blanco et al. 2011), and NCBI’s 

BLAST+ version 2.3.0 (Altschul et al. 1997; Camacho et al. 2009), to annotate a set of 

highly conserved eukaryotic genes in our assembly and thereby obtain an assessment of 

the quality and completeness of the assembly. We ran CEGMA with default parameters 

other than specifying “--vrt” to optimize the searches for a vertebrate genome. 

1.19.2 We used BUSCO version 1.1b1 (Simão et al. 2015a; Simão et al. 2015b), which used 

NCBI’s BLAST+ version 2.2.28 (Altschul et al. 1997; Camacho et al. 2009), HMMER 

version 3.1b2 (http://hmmer.org), and AUGUSTUS version 3.2.1 (Keller et al. 2011; 

Stanke 2015) to assess the assembly quality by searching for conserved orthologs. We ran 

BUSCO with default genome mode parameters other than specifying “vertebrata” as the 

evolutionary lineage with the option “-l” and using “-sp chicken” to employ the 

AUGUSTUS parameters optimized for the chicken genome. 

1.20 Contamination assessment 

1.20.1 We performed a local alignment of all scaffolds in NSO-wgs-v0 to a copy the NCBI 

nucleotide database (nt) that we downloaded on 24 June 2016 (Clark et al. 2016; NCBI 

Resource Coordinators 2016) using NCBI’s BLAST+ version 2.3.0 tool BLASTN 

(Altschul et al. 1997; Camacho et al. 2009) with default parameters other than “-outfmt 

10 -num_alignments 5 -max_hsps 1”. We used these parameters to limit to 5 the 

maximum number of alignments to unique subjects output and to limit to 1 the number of 

outputted alignments per subject. This allowed us to examine the top 5 alignments to 
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different subject sequences and ascertain whether those subject sequences were obtained 

from vertebrate or non-vertebrate organisms. 

1.20.2 In order to parse the taxonomy of the subject sequences in the alignment output, we 

obtained the a local copy of the NCBI taxonomy database using NCBI’s BLAST+ 

version 2.3.0 script, update_blastdb.pl with the parameters “--passive --timeout 300 --

force --verbose taxdb”. We also downloaded the files taxdump.tar.gz and 

gi_taxid_nucl.dmp.gz from NCBI (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy) (Clark et al. 

2016; NCBI Resource Coordinators 2016). We then used GItaxidIsVert (Henderson & 

Hanna 2016b) with default options other than using the parameter “-n” to filter the 

alignment output for non-vertebrate alignments. 

1.20.3 We used the web version of NCBI’s BLAST+ version 2.4.0 tool BLASTN (Altschul et 

al. 1997; Camacho et al. 2009) with default parameters. 

1.21 Mitochondrial genome identification 

1.21.1 We searched NSO-wgs-v1 (not repeat-masked, all contigs / scaffolds < 1,000 nt removed, 

contaminant scaffolds removed) for any of the contigs / scaffolds that were assemblies of 

the mitochondrial genome, rather than the nuclear genome using NCBI’s BLAST+ 

version 2.4.0 tool BLASTN (Altschul et al. 1997; Camacho et al. 2009) with default 

parameters other than “-outfmt 6”. 

1.21.2 We annotated the scaffold using the MITOS WebServer version 806 (Bernt et al. 2013) 

and specifying “genetic code = 02 - Vertebrate” with default settings otherwise. 

1.22 Sex identification 
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1.22.1 We searched NSO-wgs-v1 for matches to S. varia CHD1W and CHD1Z nucelotide 

sequences using NCBI’s BLAST+ version 2.4.0 tool BLASTN (Altschul et al. 1997; 

Camacho et al. 2009) with default parameters other than “-outfmt 6”. 

1.22.2 We used the Geneious version 9.1.4 aligner through the “map to reference” function 

(Kearse et al. 2012; Biomatters 2016a) with default options to align primers 2550F and 

2718R (Fridolfsson & Ellegren 1999) to the scaffolds and then extract the region 

bounded by the aligned primers. 

1.23 Repeat annotation 

1.23.1 We performed a homology-based repeat annotation of the genome assembly using 

RepeatMasker version 4.0.5 (Smit et al. 2013), which employs the repeat databases of the 

DFAM library version 1.3 (Wheeler et al. 2013) and the Repbase-derived RepeatMasker 

libraries version 20140131 (Jurka 1998, 2000; Jurka et al. 2005; Bao et al. 2015). Our 

installation of the RepeatMasker tool utilized NCBI’s BLAST+ version 2.2.30 (Altschul 

et al. 1997; Camacho et al. 2009) and RMBlast version 2.2.28 (Smit et al. 2015) sequence 

search engines as well as the tandem repeats finder (TRF) version 4.0.7b (Benson 1999, 

2012). We ran RepeatMasker with default options other than parameters "-gccalc -nolow 

-species aves". The purpose of this run was to produce a masked genome without 

masking of low complexity regions or simple repeats, which we could then use for 

downstream annotation steps. 

1.23.2 We performed a de novo modeling of the repeat elements in the genome using 

RepeatModeler version 1.0.8 (Smit & Hubley 2015), which uses two de novo repeat 

finders, RECON version 1.08 (Bao & Eddy 2002) and RepeatScout version 1.0.5 (Price 

et al. 2005), as well as the tandem repeats finder (TRF) version 4.0.7b (Benson 1999, 
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2012), the RMBlast version 2.2.28 (Smit et al. 2015) sequence search engine, and 

RepeatMasker version 4.0.5 {Smit et al., 2015} with Repbase-derived RepeatMasker 

libraries version 20140131 (Jurka 1998, 2000; Jurka et al. 2005; Bao et al. 2015). We 

built a sequence database from our genome and ran RepeatModeler with default options. 

1.23.3 We further masked the genome by running RepeatMasker again with the masked genome 

as input, using the repeat database created by our RepeatModeler run, and with default 

options other than parameters "-gccalc -nolow”. 

1.23.4 We performed homology-based repeat masking using RepeatMasker as above with 

default options other than parameters "-gccalc -species aves”. We then performed a 

second run of RepeatMasker using the repeat database created by our RepeatModeler run 

with the masked genome as input and using default options other than parameters "-

gccalc -nolow”. Our output was a second twice-masked genome with masked low 

complexity regions and simple repeats. 

1.24 Gene annotation 

1.24.1 We used the MAKER accessory script, cegma2zff, to convert the GFF file output from 

our CEGMA run on the GapClosed assembly into ZFF format to use in training of the 

gene prediction tool Semi-HMM-based Nucleic Acid Parser (SNAP) version 2006-07-28 

(Korf 2004). We used the fathom tool of the SNAP package with the parameters “-

categorize 1000”, followed by fathom with the parameters “-export 1000”, then the forge 

element of the SNAP package, then the hmm-assembler.pl script from the SNAP package 

to convert the ZFF files to an HMM file, which was then the newly trained gene finder 

that we provided SNAP in the MAKER configuration file (Campbell et al. 2014).  
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1.24.2 We ran MAKER using NCBI’s BLAST version 2.2.31+ (Altschul et al. 1997; Camacho 

et al. 2009); the sequence comparison tool, exonerate version 2.2.0 (Slater & Birney 

2005) with glib version 2.46.2; and the gene prediction tool, AUGUSTUS version 3.2.1 

(Keller et al. 2011) for which we specified “chicken” for the gene prediction species 

model. We employed default parameters for all BLAST and exonerate statistics 

thresholds and default parameters for all other MAKER configuration options. We used 

Open MPI version 1.10.2 (Gabriel et al. 2004) to run MAKER on 62 cores for 50.62 

hours. 

1.24.3 We combined the annotations for all of the genes using the MAKER accessory scripts 

“fasta_merge” and “gff3_merge” with default options. 

1.24.4 We assigned putative gene functions to the MAKER annotations by first obtaining the 

Uniprot manually annotated and non-redundant protein sequence database Swiss-Prot 

UniProt release 2016_04 (Consortium 2015) on 2016 April 25 and indexing it using 

NCBI’s BLAST version 2.2.31+ (Altschul et al. 1997; Camacho et al. 2009) tool 

“makeblastdb” with default parameters other than the options “-input_type fasta -dbtype 

prot”. We then compared the combined MAKER protein fasta file to the Swiss-Prot 

UniProt database using the BLAST 2.2.31+ tool “blastp” with default parameters other 

than the options “-evalue .000001 -outfmt 6 -num_alignments 1 -seg yes -soft_masking 

true -lcase_masking -max_hsps 1”. We then used the MAKER accessory script 

“maker_functional_gff” to add the protein homology data to the combined MAKER 

GFF3 file and the MAKER accessory script “maker_functional_fasta” to add the protein 

homology data to the combined MAKER protein and transcript fasta files. 
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1.24.5 In order to identify proteins with known functional domains, we ran InterProScan version 

5.18-57.0 (Jones et al. 2014) with options “-appl PfamA -iprlookup -goterms -f tsv”, 

which limited searches to Pfam, a database of protein family domains, on the protein 

sequences generated by MAKER. We then used the MAKER accessory script 

“ipr_update_gff” to update the MAKER-generated GFF3 file with the results of the 

InterProScan run and add information on protein family domain matches. 

1.24.6 We then filtered transcripts with an Annotation Edit Distance (AED) less than 1 and/or a 

match to a Pfam domain using the option “-s” in the script “quality_filter.pl” supplied in 

MAKER version 3.00.0 (Cantarel et al. 2008). 

1.24.7 We used the “stat” tool of GenomeTools version 1.5.1 (Gremme et al. 2013) to calculate 

annotation summary statistics, including distributions of gene lengths, exon lengths, 

number of exons per gene, and coding DNA sequence (CDS) lengths (measured in amino 

acids). We also used the “stat” tool of GenomeTools with the options “-addintrons” and 

“-intronlengthdistri” to infer intron lengths within the annotated gene boundaries and 

calculate the distribution of intron lengths.  

1.25 Alignment 

1.25.1 We aligned each set of reads to NSO-wgs-v1-masked using bwa version 0.7.12-r1044 (Li 

2013a) with default options other than parameters "bwa mem -M". We separately aligned 

paired-end and unpaired reads. For alignment of the paired-end data, we set the insert size 

to be equal to our estimates from our initial assemblies. We set the parameter "-w" to be 

equal to twice the standard deviation of the insert size we estimated from our initial 

assemblies.  
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1.25.2 We merged the paired-end and unpaired read alignments using the Picard version 1.104 

function MergeSamFiles (http://broadinstitute.github.io/picard) and sorted them using the 

Picard version 1.104 function SortSam (http://broadinstitute.github.io/picard), employing 

default settings for both tools. We next marked duplicate reads (both PCR and optical) 

using the Picard version 1.104 function MarkDuplicates 

(http://broadinstitute.github.io/picard), employing default settings. 

1.25.3 We assessed the genome coverage, duplication level, and other statistics of each read set 

based on the read alignments. We used the Picard version 1.141 function 

CollectWgsMetrics (http://broadinstitute.github.io/picard) with the bam file output by 

MarkDuplicates as the input file, employing default settings, except setting 

COUNT_UNPAIRED=True to include coverage contributed by unpaired reads when 

calculating the alignment statistics. The default CollectWgsMetrics settings included 

setting the minimum mapping quality for a read to contribute coverage as 20 and the 

minimum base quality for a base to contribute coverage as 20. We also ran 

CollectWgsMetrics with the default settings and COUNT_UNPAIRED=False to obtain 

the portion of the total aligned reads contributed by unpaired reads. 

1.25.4 In order to obtain an estimate of the insert size of the mate pair libraries independent of 

the N-gaps in the scaffold sequences, we divided the scaffolds into contigs at 25 or more 

N’s using make-contig-ref.sh from NSO-genome-scripts version 1.0.0 (Hanna & 

Henderson 2017) with bioawk version 1.0 (Li 2013b), GNU Awk (GAWK) version 4.0.1 

(Free Software Foundation 2012), and GNU fold version 8.21 (MacKenzie 2013). We 

then aligned the mate pair libraries to this set of contigs using bwa version 0.7.10-r789 

(Li 2013a) with default options other than parameters "bwa mem -M". For alignment of 
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the paired-end data, we set the insert size to be equal to our estimates from our initial 

assemblies. We set the parameter "-w" to be equal to twice the standard deviation of the 

insert size we estimated from our initial assemblies. We calculated the insert sizes for 

each of the three mate pair libraries from these alignments using calcInsertLen.sh from 

NSO-genome-scripts version 1.0.0 (Hanna & Henderson 2017) with bioawk version 1.0 

(Li 2013b). 

1.26 Microsatellite analysis 

1.26.1 We searched the assembly for 16 pairs of microsatellite primer sequences using NCBI’s 

BLAST+ version 2.4.0 tool BLASTN (Altschul et al. 1997; Camacho et al. 2009) with 

default parameters other than “-outfmt 6 –word_size 7”. 

1.27 Barred owl divergence 

1.27.1 We used 50 ng genomic DNA to prepare a whole-genome library using a Nextera DNA 

Sample Preparation Kit (Illumina). After tagmentation, we cleaned the reaction with a 

DNA Clean & Concentrator -5 kit (Zymo Research). We amplified the reaction with 5 

cycles of PCR using a KAPA Library Amplification kit (KAPA Biosystems) and then 

cleaned the reaction with a DNA Clean & Concentrator -5 kit (Zymo Research). We used 

a BluePippin (Sage Science) to select library fragments in the size range of 500-700 nt, 

which, after subtracting the 134 nt of adapters, corresponded to selecting an average 

insert size of 466 nt. We cleaned the BluePippin products with 0.6X Agencourt AMPure 

XP (Beckman Coulter) magnetic beads and then performed a real-time PCR (rtPCR) 

using a KAPA Real-Time Library Amplification Kit (KAPA Biosystems) on a CFX96 

Touch Real-Time PCR Detection System (Bio-Rad) to amplify the library with 8 cycles 

PCR. We then cleaned the PCR products with a DNA Clean & Concentrator -5 kit (Zymo 
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Research). We lastly assessed the library fragment size distribution with a 2100 

BioAnalyzer (Agilent Technologies) and the concentration of double-stranded DNA 

material with a Qubit 2.0 Flurometer (Invitrogen). We combined this library with others 

and sequenced it on two successive runs of 150 nt paired-end sequencing using a 2-lane 

flow cell on a HiSeq 2500 (Illumina) in rapid mode. On the first run, we obtained 

sequencing data from a portion of each of the two flow cell lanes. On the second run, we 

obtained data from a portion of one of the two flow cell lanes. We combined all of the 

data from the two runs for the downstream steps. 

1.27.2 We performed adapter and quality trimming of the sequence data using Trimmomatic 

version 0.32 (Bolger et al. 2014). We used the following options: 

"ILLUMINACLIP:<fasta of Illumina adapter sequences>:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:28 MINLEN:36". 

1.27.3 We aligned trimmed paired and unpaired reads to NSO-wgs-v1-masked using bwa mem 

version 0.7.12-r1044 (Li 2013a) with default options other than parameters "bwa mem -

M". We separately aligned paired-end and unpaired reads. For alignment of the paired-

end reads, we set the insert size to be equal to the size estimate of the final library given 

by the 2100 BioAnalyzer (Agilent Technologies) minus the length of the adapters, which 

gave an insert size of 466 nt. Additionally, for the alignment of the paired-end reads we 

set the parameter "-w", the maximum insert size, equal to 1000. 

1.27.4 We merged the paired-end and unpaired sequence alignments using the Picard version 

1.104 function MergeSamFiles (http://broadinstitute.github.io/picard) and sorted them 

using the Picard version 1.104 function SortSam (http://broadinstitute.github.io/picard), 

employing default settings for both tools. We next marked duplicate sequences (both 
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PCR and optical) using the Picard version 1.104 function MarkDuplicates 

(http://broadinstitute.github.io/picard), employing default settings. 

1.27.5 We calculated various alignment statistics using the Picard version 1.141 function 

CollectWgsMetrics (http://broadinstitute.github.io/picard) with the bam file output by 

MarkDuplicates as input and employing default settings except setting 

COUNT_UNPAIRED=True in order to include coverage contributed by unpaired reads 

in the calculation of the statistics on the aligned reads. The default CollectWgsMetrics 

settings include setting the minimum mapping quality for a read to contribute coverage as 

20 and the minimum base quality for a base to contribute coverage as 20. We also ran 

CollectWgsMetrics with the default settings and COUNT_UNPAIRED=False to obtain 

the portion of the total aligned reads contributed by unpaired reads. 

1.27.6 We used Genome Analysis Toolkit (GATK) version 3.4-46 UnifiedGenotyper (McKenna 

et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013) to call SNPs using the S. 

occidentalis (Sequoia) and S. varia (CNHM<USA-OH>:ORNITH:B41533) bwa-aligned, 

sorted, duplicate-marked bam files as simultaneous inputs and employing default options 

other than setting "--output_mode EMIT_ALL_SITES". 

1.27.7 We first filtered the variant file using the following GNU Awk (GAWK) version 4.0.1 

(Free Software Foundation 2012) command: “awk 'NF==11 && substr($1, 1, 2) != "##" 

&& $6>=50 && $1 != "#CHROM" && $1 != "C7961234" && $1 != "C7963448" && 

$1 != "C7970814" && $1 != "C8091874" && $1 != "scaffold3674"' | awk '$4=="A" || 

$4=="C" || $4=="G" || $4=="T"' | awk '$5=="A" || $5=="C" || $5=="G" || $5=="T"' > 

filtered1.vcf”. This removed lines without 11 fields, header lines, variant sites where the 
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Phred-scaled probability that a polymorphism exists was < 50, contaminant scaffolds, the 

mitochondrial genome scaffold, indels, and non-polymorphic sites. 

1.27.8 We then calculated the unfiltered allele depth (the number of reads that supported an 

allele) summed across all of the alleles at each of the remaining variant sites using the 

following GNU cut version 8.21 (Ihnat et al. 2013) and GNU Awk (GAWK) version 

4.0.1 (Free Software Foundation 2012) command: “cat filtered1.vcf | cut -f10,11 | awk 

'BEGIN {cov} {split($1,a,":"); split(a[2],acov,","); split($2,b,":"); split(b[2],bcov,","); 

totcov = acov[1]+acov[2]+bcov[1]+bcov[2]; print totcov}' > vcf-coverage.out”. We then 

graphed these depths and calculated the mean and standard deviation (σ) of the 

distribution using vcf-coverage-calc.py from NSO-genome-scripts version 1.0.0 (Hanna 

& Henderson 2017) with Python version 2.7.12 (Python Software Foundation 2016), 

matplotlib version 1.5.1 (Hunter 2007; Matplotlib Development Team 2016), and NumPy 

version 1.11.1 (NumPy Developers 2016). 

1.27.9 When calculating the nucleotide diversity both within and between samples (Hw and Hb), 

we removed variants where the unfiltered allele depth summed across all of the alleles 

was greater than 5σ greater than the mean depth, variants without information for both 

samples, and variants where the S. o. caurina genotype was homozygous for the non-

reference allele. We used calc-pi-exclude-onlySPOW.sh and calc-pi-exclude-

onlyBADO.sh from NSO-genome-scripts version 1.0.0 (Hanna & Henderson 2017) with 

GNU cut version 8.21 (Ihnat et al. 2013) and GNU Awk (GAWK) version 4.0.1 (Free 

Software Foundation 2012) to calculate the Hw for S. o. caurina and S. varia, 

respectively. We used calc-pi-exclude.sh from NSO-genome-scripts version 1.0.0 (Hanna 

& Henderson 2017) with GNU Awk (GAWK) version 4.0.1 (Free Software Foundation 
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2012) to calculate Hb for S. o. caurina and S. varia. In order to report Hw and Hb in terms 

of the number of nucleotide differences per site within the sample, we divided the output 

from the scripts above by the number of ACGT characters in NSO-wgs-v1-nuc (the 

whole-genome assembly without the contaminant or mitochondrial scaffolds), which we 

obtained using “assemblathon-stats-ex.pl” from NSO-genome-scripts (Bradnam et al. 

2013; Hanna & Henderson 2017). 

1.27.10 We averaged the values of Hw for S. o. caurina and S. varia and then used this 

average along with Hb in equation 3 from a study by Hudson, Slatkin & Maddison (1992) 

in order to estimate FST between S. o. caurina and S. varia. 

1.28 PSMC analysis 

1.28.1 In order to prepare our data for input into an analysis using an implementation of the 

pairwise sequentially Markovian coalescent model, PSMC version 0.6.5-r67 (Li 2015; Li 

& Durbin 2011), we used Samtools version 1.3.1 with HTSlib 1.3.1 (Li, Handsaker, 

Marshall, et al. 2016; Li et al. 2009), bcftools version 1.3.1 (Li, Handsaker, Danecek, et 

al. 2016), and the vcfutils.pl script from bcftools to call variants with the command 

“samtools mpileup -C50 –uf reference-genome.fa alignment-file.bam | bcftools call -c - | 

vcfutils.pl vcf2fq -d minimum-read-depth -D maximum-read-depth | gzip 

>variants.fq.gz”. As per the recommendation of the PSMC documentation 

(https://github.com/lh3/psmc), we used a third of the average read depth as the minimum 

read depth (-d) and twice the average read depth as the maximum read depth (-D) (-d 20 -

D 126 and -d5 -D 33 for S. o. caurina and S. varia, respectively). We determined the 

average read depth using Samtools version 1.3.1 with HTSlib 1.3.1 (Li, Handsaker, 

Marshall, et al. 2016; Li et al. 2009) and GNU Awk (GAWK) version 4.0.1 (Free 
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Software Foundation 2012) with the command “samtools depth alignment-file.bam | awk 

'{sum += $3} END {print sum / NR}'”. 

1.28.2 After variant calling, we used the PSMC script “fq2psmcfa” next with the command 

“fq2psmcfa -q20 variants.fq.gz >variants.psmcfa”. We then ran PSMC with the 

command “psmc -N25 -t15 -r5 -p "4+25*2+4+6" -o variants.psmc variants.psmcfa”. We 

next ran the PSMC scripts “psmc2history.pl” and “history2ms.pl” with the command 

“psmc2history.pl variants.psmc | history2ms.pl > variants.psmc_ms-cmd.sh”. 

1.28.3 We ran 100 rounds of bootstraping by first splitting long reference sequences into shorter 

lengths in the variants.psmcfa file using the PSMC script “splitfa” with the command 

“splitfa variants.psmcfa >variants-split.psmcfa” and then running PSMC with the 

command “parallel -j25 ‘psmc -N25 -t15 -r5 -b -p "4+25*2+4+6" -o variants-split-round-

{}.psmc variants-split.psmcfa’ :::: <(seq 100)”. 

1.28.4 We graphed the output of our PSMC run and rounds of bootstrapping by first combining 

using GNU cat version 8.21 (Granlund & Stallman 2013) with the command “cat 

variants.psmc variants-split-round-*.psmc >variants-combined.psmc”. We then plotted 

the output using the PSMC script “psmc_plot.pl” with the command “psmc_plot.pl -u 

4.6e-09 -g 2 variants-combined-plot variants-combined.psmc”. We used 2 years as the 

generation time (-g option for psmc_plot.pl) for both S. o. caurina and S. varia (Gutiérrez 

et al. 1995; Mazur & James 2000) although S. o. caurina may breed in its first year 

(Hamer et al. 1994) and some researchers have estimated the generation time S. o. 

caurina as 10 years (Noon & Biles 1990; U.S. Forest Service 1992). We used 4.6 × 10−9 

mutations per site per generation (Smeds et al. 2016) as the mutation rate (-u option for 

psmc_plot.pl). 
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1.29 Light-associated gene analyses 

1.29.1 We searched in NSO-wgs-v1 for regions orthologous to probes for 19 genes that encode 

proteins with light-associated functions using Geneious version 9.1.6 (Biomatters 2016b; 

Kearse et al. 2012) and the included version of the NCBI BLAST+ BLASTn tool (Zhang 

et al. 2000) with default options. On 1-10 November, 2016, we used the web version of 

NCBI BLAST+ version 2.5.0 (Zhang et al. 2000) with discontiguous megablast options 

to align the probes against sequences in the NCBI Whole-Genome-Shotgun (WGS) 

contigs database limited by specifying the organism T. alba (taxid:56313). 

1.29.2 When BLAST searches were unsuccessful, we used synteny data from Ensembl (version 

86; (Yates et al. 2016) to search for evidence of whole gene deletion. We identified genes 

flanking the gene of interest in related taxa, and subsequently used BLAST to align the 

reference sequences for these genes against the S. o. caurina and T. alba genome 

assemblies. We imported the S. o. caurina genome assembly into Geneious version 9.1.6 

(Biomatters 2016b; Kearse et al. 2012) and used the included version of the NCBI 

BLAST+ BLASTn tool (Zhang et al. 2000) to search for the flanking genes in our 

assembly. We used the web version of NCBI BLAST+ version 2.5.0 (Zhang et al. 2000) 

to align the flanking genes against T. alba sequences in the NCBI Whole-Genome-

Shotgun (WGS) contigs database. 

1.29.3 We used the NCBI BLAST+ version 2.5.0 blastn tool (Zhang et al. 2000) with the 

discontiguous megablast option to align a reference Opn4m sequence to fifteen avian 

retinal transcriptomes in NCBI’s Sequence Read Archive (SRA) (Leinonen et al. 2011; 

NCBI Resource Coordinators 2016) including the pied harrier (Circus melanoleucos) 

(SRA accession SRR3203217), long-eared owl (Asio otus) (SRA accession 
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SRR3203220), eastern grass owl (Tyto longimembris) (SRA accession SRR3203222), 

hoopoe (Upupa epops) (SRA accession SRR3203224), Eurasian eagle-owl (Bubo bubo) 

(SRA accession SRR3203225), black-winged kite (Elanus caeruleus) (SRA accession 

SRR3203227), Eurasian scops owl (Otus scops) (SRA accession SRR3203230), common 

kestrel (Falco tinnunculus) (SRA accession SRR3203231), grey-faced buzzard (Butastur 

indicus) (SRA accession SRR3203233), besra (Accipiter virgatus) (SRA accession 

SRR3203234), cinereous vulture (Aegypius monachus) (SRA accession SRR3203236), 

Eurasian hobby (Falco subbuteo) (SRA accession SRR3203238), grey-headed 

woodpecker (Picus canus) (SRA accession SRR3203240), little owl (Athene noctua) 

(SRA accession SRR3203242), Indian scops owl (Otus bakkamoena) (SRA accession 

SRR3203243) (Wu et al. 2016). 

2 Supplementary Results and Discussion 

2.1 Scaffold numbering 

2.1.1 When referring to specific scaffolds in the results and discussion sections, we have 

inserted a dash (“-”) between the word “scaffold” and the scaffold number for legibility. 

These dashes are not present in any of the assembly data files. Thus, “scaffold-1085” 

referenced in the manuscript will appear as “scaffold1085” in the assembly and other 

associated files. 
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3 Supplementary Tables 

Table S1. Sequence data collected for use in genome assembly. We here provide information on 

the insert size, fragmentation method, amplification, sequencing length, and raw data quantity for 

all libraries sequenced for this genome assembly. We have numbered the libraries and refer to 

these numbers in other sections of this manuscript. 

Library 
number 

Library name Average 
insert size 

(nt) 

Insert size 
standard 
deviation 

(nt) 

Library 
Fragmentation 

method 

PCR 
amplification 

used (Yes / No) 

Paired-end 
read lengths 

forward / 
reverse (nt) 

Raw reads passing 
onboard Illumina 

quality filter coverage 
of 1.5 Gnt genome 
(1X-fold coverage) 

1 Nextera350nt 
lane 1 

247 118 Nextera Yes 100 / 100 9.80 

2 Nextera350nt 
lane 2 

247 118 Nextera Yes 100 / 100 26.44 

3 Hydroshear 500 52 Hydroshear Yes 350 / 250 2.55 
4 Nextera550nt 

lane 1 
560 25 Nextera Yes 300 / 300 3.65 

5 Nextera550nt 
lane 2 

560 25 Nextera Yes 375 / 225 8.90 

6 Nextera700nt 566 194 Nextera Yes 150 / 150 31.14 
7 noPCR550nt 619 132 Covaris No 350 / 250 3.50 
8 PCR900nt 687 58 Covaris Yes 350 / 250 2.04 
9 MP4kb 3,316 213 Nextera Mate 

Pair 
Yes 100 / 100 7.84 

10 MP7kb 5,904 537 Nextera Mate 
Pair 

Yes 100 / 100 8.48 

11 MP11kb 9,615 1930 Nextera Mate 
Pair 

Yes 100 / 100 8.19 
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Table S2. Preliminary assembly parameters. We here report the parameters used in our 

preliminary assemblies using SOAPdenovo2. "Trim level" indicates the average Phred score to 

which we trimmed using Trimmomatic. A higher Phred score indicates a more restrictive 

trimming. “Error correction” refers to whether we performed error correction on the input reads 

for the assembly. We provide information on how we specified that the assembler use the paired-

end and unpaired data for each assembly. For a given assembly, we note which libraries provided 

data and in which portions of the assembly process that data was used. For a given portion of the 

assembly process, we give the numbers of the utilized libraries followed, in parentheses, by the 

rank given to each library in the assembly configuration file. Please refer to Table S1 for 

information about the libraries to which the numbers refer. An asterisk is next to the preliminary 

assembly that we chose to use as the basis for the final assembly. 
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Assembly Trim 
level 

Error 
correction Assembly notes 

Unpaired 
data - only 

contig 

Paired-end 
data - only 

scaffold 

Paired-end data 
- both contig 
and scaffold 

Unpaired data 
- only gap 

closure 

1 28 No N/A 1-11 (6) 9 (3), 10 (4), 
11 (5) 

1-3 (1), 6 (2), 7 
(1), 8 (2) None  

2 28 No N/A  

1-2 (6), 4-11 
(6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 6 (2), 7 
(1), 8 (2) None  

3 28  

Only reads merged with 
BBMerge used as unpaired 
data 

1-5 (6), 7-8 
(6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 6 (2), 7 
(1), 8 (2) None  

4* 17 Yes N/A  

1-2 (6), 4-11 
(6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 6 (2), 7 
(1), 8 (2) None  

5 28 No No merging of paired-end 
reads performed 

 

9 (3), 10 (4), 
11 (5) 

1-5 (1), 6 (2), 7 
(1), 8 (2) None  

6 28 No N/A  1-11 (6) 9 (3), 10 (4), 
11 (5) 

1-3 (1), 6 (2), 7 
(1) None  

7 28 No N/A  1-11 (6) 9 (3), 10 (4), 
11 (5) 

1 (1), 2 (1), 3 
(1), 4 (1), 5 (1), 
6 (2), 7 (1), 8 
(2) 

None  

8 28 No No merging of paired-end 
reads performed. 

 

9 (3), 10 (4), 
11 (5) 

1 (1), 2 (1), 4 
(1), 5 (1), 6 (2), 
7 (1), 8 (2) 

None  

9 28 No 
Only reads merged with 
BBMerge used as unpaired 
data 

1-2 (6), 4-5 
(6), 7-8 (6) 

9 (3), 10 (4), 
11 (5) 

1 (1), 2 (1), 6 
(2), 7 (1), 8 (2) None  

10 28 No 
Only reads merged with 
BBMerge used as unpaired 
data 

1-2 (6), 4-5 
(6), 7-8 (6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 4-5 (1), 
6 (2), 7 (1), 8 
(2) 

None  

11 17 Yes 
Only reads merged with 
BBMerge used as unpaired 
data, library 3 excluded. 

1-2 (6), 4-5 
(6), 7-8 (6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 4-5 (1), 
6 (2), 7 (1), 8 
(2) 

None  

12 17 Yes All unpaired reads used, 
library 3 excluded. 

1-2 (6) 4-5 
(6), 6-11 (6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 4-5 (1), 
6 (2), 7 (1), 8 
(2) 

None  

13 17 Yes 

Reads merged with BBMerged 
used for contig assembly, 
other unpaired reads used only 
for gap closure. 

1-2 (6), 4-5 
(6), 7-8 (6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 2 (1), 4-
5 (1), 6 (2), 7 
(1), 8 (2) 

1-2 (7), 4-11 
(7) 

14 7 Yes N/A  

1-2 (6), 4-11 
(6) 

9 (3), 10 (4), 
11 (5) 

1-2 (1), 4-5 (1), 
6 (2), 7 (1), 8 
(2) 

None  
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Table S3. Light-associated gene searches information. This table provides details on the 

reference sequences used for and the results of our searches for light-associated genes in the 

genome assemblies of Strix occidentalis caurina and Tyto alba. “Stop” indicates the presence of 

a premature stop codon. “Del” indicates a frameshift deletion. “Ins” indicates a frameshift 

insertion. 

Gene Reference Sequence Strix occidentalis Sequence Tyto alba Sequence 

SWS1 GenBank: AH007798 Columba 
livia No BLAST results No BLAST results 

SWS1 notes 

Synteny: Taeniopygia guttata and 
Homo sapiens, 5' end FLNC 
(REV), 3' end CALU (REV); Anolis 
carolinensis, 3' end CALU (REV) 

FLNC: scaffold-4221        
CALU: scaffold-15 

No gene predictions for FLNC or 
CALU in Tyto 

SWS2 GenBank: AH007799 Columba 
livia 

scaffold-4153 & scaffold-
7110: Functional No BLAST results 

SWS2 notes 

Synteny: Anolis carolinensis and 
Xenopus laevis 5' end MECP2 
(REV), 3' end LWS; avian contigs 
in Ensembl are very short and do 
not include flanking genes 

Only exons 1 (partial), 2 and 3 
recovered; partial exon 1 
flanked by N's, and exon 3 is 
towards the end of the 
scaffold; 2 different scaffolds; 
100% identical except 1-nt diff 
in exon 3, nonsynonymous 

MECP2 and LWS not predicted in 
Tyto 

Rh1 GenBank: AH007730 Columba 
livia scaffold-133: Functional JJRD01003728, JJRD01003729: 

Functional 

Rh2 GenBank: AH007731 Columba 
livia scaffold-1932: Functional 

JJRD01131248, JJRD01131249: 
Pseudogene (exon 1: 29-nt del; 
exon 2: stop; exon 3: stop; exon 
4: 2-nt del) 

LWS GenBank: AH007800 Columba 
livia scaffold-6263: Functional No BLAST results 

LWS notes 

Synteny: Anolis carolinensis 5' end 
SWS2, 3' end TEX28 (REV); 
Xenopus laevis 5' end SWS2, 3' end 
AVPR2; avian contigs in Ensembl 
are very short and do not include 
flanking genes 

Only exons 2, partial 5 and 6; 
3-5 are N's, no hits for exon 1 

No gene predictions for SWS2, 
AVPR2 or TEX28 

OpnP GenBank: U15762, WGS: 
AADN03007691 Gallus gallus 

No BLAST results; After 
BLASTing intergenic region, 
has hit with Gallus gallus 
genomic pinopsin, non-
coding region 5' of cds is 
retained 

JJRD01162372, JJRD01162373: 
Pseudogene (exon 1: start codon 
mutation ACA, 13-nt del, 2-nt 
ins, 1-nt del, exon 2: 1-nt del; 
intron 3-exon 4 boundary: 21 nt-
del; exon 4: 7-nt del, 2-nt del; 
exon 5: 1-nt del) 

OpnP notes 
Synteny: Gallus gallus DOC2B, 5' 
end, 3' end TEX14 (REV); Ficedula 
albicollis DOC2B, 5' end 

DOC2B: scaffold-86 
TEX14: scaffold-86  

OpnVA GenBank: EF055883, WGS: 
AADN03005037 Gallus gallus Scaffold205: Functional 

JJRD01088850, JJRD01088852, 
JJRD01106859, JJRD01168068: 
Functional 



 
 

35 

Gene Reference Sequence Strix occidentalis Sequence Tyto alba Sequence 

Opn4x GenBank: NM_204625, WGS: 
AADN03004364 Gallus gallus scaffold-147: Functional JJRD01038044: Functional 

Opn4m GenBank: AY882944, WGS: 
AADN04000143 Gallus gallus 

scaffold-219: Pseudogene? 
(exon 8: stop, 4-nt del) 

JJRD01098086, JJRD01098087: 
Pseudogene? (exon 8: 4-nt del; 
intron 11: splice donor mutation 
GT to AT) 

Opn3 GenBank: XM_426139, WGS: 
AADN04000318 Gallus gallus scaffold-728: Functional JJRD01072701: Functional (No 

BLAST results for exon 1) 

Opn5 
GenBank: NM_001130743    
WGS: AADN04000287 Gallus 
gallus  

scaffold-546: Functional JJRD01001581, JJRD01133804: 
Functional 

Opn5L1 GenBank: NM_001310056, WGS: 
AADN04000228 Gallus gallus scaffold-6: Functional JJRD01004196: Functional  

Opn5L2 GenBank: NM_001162892, WGS: 
AADN04000287 Gallus gallus scaffold-722: Functional JJRD01082691: Functional 

RRH GenBank: NM_001079759, WGS: 
AADN04000018 Gallus gallus scaffold-22: Functional JJRD01123735: Functional 

RGR GenBank: NM_001031216, WGS: 
AADN04000143 Gallus gallus scaffold-219: Functional JJRD01065549: Functional 

EEVS-like GenBank: XM_013180282, WGS: 
AOGC01018216 Anser cygnoides scaffold-133: Functional JJRD01160345: Functional 

MT-Ox GenBank: XM_015293238, WGS: 
AADN04000009 Gallus gallus scaffold-133: Functional 

JJRD01160345, JJRD01160346, 
JJRD01160347, JJRD01160348: 
Functional 

Photolyase GenBank: XM_422729, WGS: 
AADN04000078 Gallus gallus scaffold-742: Functional JJRD01136093, JJRD01136094: 

Functional 

CYP2J19 GenBank: XM_422553, WGS: 
AADN04000032 Gallus gallus 

scaffold-313: Pseudogene? 
(exon 9: 1-nt ins, 2-nt del) 

JJRD01034859: Pseudogene 
(exon 1: stop; exon 3: 5-nt del; 
exon 5: stop; exon 6: stop) 
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Table S4. Assembly metrics with a range of cutoffs. These are statistics on the final (post gap 

closing) assembly that display the consequence of choosing various cutoffs for minimum 

scaffold length and the number of N’s that separate a contig. We have marked the line with the 

cutoffs and statistics that correspond to the final chosen assembly version with an asterisk. 

Scaffold 
minimum 
length (nt) 

Scaffold 
N50 (nt) 

Scaffold 
L50 

Number of 
Scaffolds 

Total sequence 
length (nt) 

Number of 
N’s to split 
contigs 

Contig 
N50 

Contig 
L50 

Number of 
contigs 

Total sequence 
length (nt) 

1000* 3,983,020 92 8,113 1,255,568,683 25 171,882 2,057 27,258 1,241,846,690 
1000 - - - - 20 167,327 2,112 27,729 1,241,836,309 
1000 - - - - 15 163,476 2,166 28,200 1,241,828,287 
1000 - - - - 10 159,062 2,233 28,719 1,241,822,133 
1000 - - - - 5 155,200 2,286 29,229 1,241,818,593 
1000 - - - - 1 51,301 7,054 65,092 1,241,782,051 

500 3,937,821 93 17,952 1,262,291,236 25 170,589 2,076 37,544 1,248,502,317 
500 - - - - 20 166,062 2,132 38,023 1,248,491,764 
500 - - - - 15 162,595 2,186 38,504 1,248,483,572 
500 - - - - 10 158,193 2,254 39,038 1,248,477,239 
500 - - - - 5 153,747 2,308 39,562 1,248,473,599 
500 - - - - 1 50,930 7,119 76,379 1,248,436,081 
300 3,915,799 95 48356 1,273,290,518 25 168,721 2,109 67,949 1,259,501,544 
300 - - - - 20 164,817 2,166 68,428 1,259,490,991 
300 - - - - 15 161,269 2,220 68,909 1,259,482,799 
300 - - - - 10 156,434 2,289 69,443 1,259,476,466 
300 - - - - 5 152,072 2,344 69,967 1,259,472,826 
300 - - - - 1 50,425 7,228 106,823 1,259,435,266 

None 1,836,279 209 3,754,965 1,882,109,172 25 81,400 4,678 3,774,558 1,868,320,198 
None - - - - 20 79,089 4,800 3,775,037 1,868,309,645 
None - - - - 15 77,624 4,921 3,775,518 1,868,301,453 
None - - - - 10 76,045 5,061 3,776,052 1,868,295,120 
None - - - - 5 73,935 5,180 3,776,576 1,868,291,480 
None - - - - 1 25,761 15,609 3,813,432 1,868,253,920 
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Table S5. Final SOAPdenovo2 parameters. This table lists the SOAPdenovo2 parameters that 

we specified for each library to generate the final assembly. 

Library Paired or 
unpaired 

reads 

Configuration 
file insert size 

(nt) 

Used in contig 
or scaffold 
building 

Assembly 
usage rank 

Pair 
number 
cutoff 

Mapping 
length 

(nt) 
Nextera350nt lane 1 paired 247 both 1 3 32 
Nextera350nt lane 2 paired 247 both 1 3 32 
Nextera700nt paired 566 both 2 3 32 
noPCR550nt paired 619 both 1 3 32 
PCR900nt paired 687 both 2 3 32 
MP4kb paired 3,316 scaffold 3 5 35 
MP7kb paired 5,904 scaffold 4 5 35 
MP11kb paired 9,615 scaffold 5 5 35 
Nextera350nt lane 1 unpaired N/A contig 6 3 32 
Nextera350nt lane 2 unpaired N/A contig 6 3 32 
Nextera550nt lane 1 unpaired N/A contig 6 3 32 
Nextera550nt lane 2 unpaired N/A contig 6 3 32 
Nextera700nt unpaired N/A contig 6 3 32 
noPCR550nt unpaired N/A contig 6 3 32 
PCR900nt unpaired N/A contig 6 3 32 
MP4kb unpaired N/A contig 6 3 32 
MP7kb unpaired N/A contig 6 3 32 
MP11kb unpaired N/A contig 6 3 32 
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Table S6. Full assembly metrics. Listed here are metrics on the full assembly (no contaminate or 

mitochondrial sequences removed) before gap-closing, after gap-closing, and after gap-closing 

and removal of all contigs and scaffolds less than 1000 nt in length. Strings of 25 or more N’s 

broke scaffolds into contigs. 
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Assembly version No gap-closing, scaffolds 

and contigs <1000 nt 
removed 

Gap-closed, no 
scaffolds or 
contigs removed 

Gap-closed, 
scaffolds and 
contigs <1000 nt 
removed 

Number of scaffolds 3,754,965 3,754,965 8,113 
Total size of scaffolds 1,884,424,465 nt 1,882,109,172 nt 1,255,568,683 nt 
Longest scaffold 15,783,852 nt 15,750,186 nt 15,750,186 nt 
Shortest scaffold 128 nt 128 nt 1,000 nt 
Number of scaffolds > 1K nt 8,117 (0.2%) 8,100 (0.2%) 8,100 (99.8%) 
Number of scaffolds > 10K nt 1,755 (0.0%) 1,747 (0.0%) 1,747 (21.5%) 
Number of scaffolds > 100K nt 661 (0.0%) 661 (0.0%) 661 (8.1%) 
Number of scaffolds > 1M nt 303 (0.0%) 303 (0.0%) 303 (3.7%) 
Number of scaffolds > 10M nt 9 (0.0%) 9 (0.0%) 9 (0.1%) 
Mean scaffold size 502 nt 501 nt 154,760 nt 
Median scaffold size 150 nt 150 nt 1,903 nt 
N50 scaffold length (L50 scaffold count) 1,843,286 nt (209) 1,836,279 nt (209) 3,983,020 nt (92) 
N60 scaffold length (L60 scaffold count) 622,124 nt (370) 619,581 nt (371) 3,012,707 nt (129) 
N70 scaffold length (L70 scaffold count) 255 nt (216,224) 255 nt (218,948) 2,142,451 nt (178) 
N80 scaffold length (L80 scaffold count) 174 nt (1,110,557) 174 nt (1,113,218) 1,545,070 nt (246) 
N90 scaffold length (L90 scaffold count) 143 nt (2,336,944) 143 nt (2,338,563) 618,731 nt (372) 
scaffold %GC 42.81% 43.82% 41.31% 
scaffold %N 2.89% 0.74% 1.10% 
Percentage of assembly in scaffolded contigs 66.4% 65.7% 98.5% 
Percentage of assembly in unscaffolded contigs 33.6% 34.3% 1.5% 
Average number of contigs per scaffold 1.0 1.0 3.4 
Average length of break (>25 Ns) between 
contigs in scaffold 

311 703 716 

Number of contigs 3,929,051 3,774,558 27,258 
Number of contigs in scaffolds 179,957 22,374 21,480 
Number of contigs not in scaffolds 3,749,094 3,752,184 5,778 
Total size of contigs 1,830,129,061 nt 1,868,320,198 nt 1,241,846,690 nt 
Longest contig 186,255 nt 1,259,046 nt 1,259,046 nt 
Shortest contig 5 nt 128 nt 130 nt 
Number of contigs > 1K nt 123,899 (3.2%) 23,921 (0.6%) 23,921 (87.8%) 
Number of contigs > 10K nt 37,347 (1.0%) 12,374 (0.3%) 12,374 (45.4%) 
Number of contigs > 100K nt 58 (0.0%) 3,909 (0.1%) 3,909 (14.3%) 
Number of contigs > 1M nt 0 (0.0%) 8   (0.0%) 8 (0.0%) 
Mean contig size 466 nt 495 nt 45,559 nt 
Median contig size 150 nt 150 nt 6,696 nt 
N50 contig length (L50 contig count) 7,855 nt (46,857) 81,400 nt (4,678) 171,882 nt (2,057) 
N60 contig length (L60 contig count) 3,275 nt (81,604) 33521 nt (8,121) 134,419 nt (2,876) 
N70 contig length (L70 contig count) 254 nt (448,713) 255 nt (254,707) 98,599 nt (3,956) 
N80 contig length (L80 contig count) 170 nt (1,346,253) 173 nt (1,148,670) 66,629 nt (5,485) 
N90 contig length (L90 contig count) 142 nt (2,548,885) 142 nt (2,367,834) 34,559 nt (8,023) 
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Table S7. Statistics from after quality-filtering MAKER annotations. This is a table of 

annotation summary statistics resulting from quality-filtering our MAKER pipeline annotation 

output. 

 Values post -s filter 
parsed genome node DAGs 745,622 
sequence regions 8,112 (total length: 1,255,013,157 nt) 
multi-features 15,712 
genes 16,718 
protein-coding genes 16,718 
mRNAs 16,718 
protein-coding mRNAs 16,718 
exons 146,689 
CDSs 146,217 
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Table S8. Mitochondrial genome assembly gene annotations. This is a table of the gene 

annotations of the assembly of a partial mitochondrial genome represented by scaffold-3674. The 

coordinates are 1-based. 

Gene Scaffold Start position End position Direction 
tRNAThr scaffold3674 231 299 - 
Cytb scaffold3674 307 1431 - 
ND5 scaffold3674 1463 3268 - 
tRNALeu1 scaffold3674 3269 3339 - 
tRNASer1 scaffold3674 3342 3407 - 
tRNAHis scaffold3674 3410 3479 - 
ND4L scaffold3674 3490 4857 - 
ND4L scaffold3674 4854 5147 - 
tRNAArg scaffold3674 5149 5218 - 
ND3_b scaffold3674 5224 5397 - 
ND3_a scaffold3674 5399 5572 - 
tRNAGly scaffold3674 5573 5641 - 
COIII scaffold3674 5643 6425 - 
ATP6 scaffold3674 6431 7108 - 
ATP8 scaffold3674 7105 7266 - 
tRNALys scaffold3674 7268 7338 - 
COII scaffold3674 7357 8031 - 
tRNAAsp scaffold3674 8034 8102 - 
tRNASer2 scaffold3674 8106 8177 + 
COI scaffold3674 8178 9710 - 
tRNATyr scaffold3674 9721 9791 + 
tRNACys scaffold3674 9792 9860 + 
tRNAAsn scaffold3674 9863 9936 + 
tRNAAla scaffold3674 9938 10006 + 
tRNATrp scaffold3674 10008 10083 - 
ND2 scaffold3674 10094 11122 - 
tRNAMet scaffold3674 11123 11191 - 
tRNAGln scaffold3674 11191 11261 + 
tRNAIle scaffold3674 11273 11344 - 
ND1 scaffold3674 11352 12299 - 
tRNALeu2 scaffold3674 12314 12387 - 
16S scaffold3674 12387 13982 - 
tRNAVal scaffold3674 13983 14054 - 
12S scaffold3674 14054 15041 - 
tRNAPhe scaffold3674 15041 15108 - 
tRNAGlu scaffold3674 21542 21614 + 
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Table S9. Information on searches for light-associated genes in non-owl genome assemblies. 

This table provides information on the results of our searches for a subset of the light-associated 

genes in several non-owl avian genome assemblies. “Stop” indicates the presence of a premature 

stop codon. “Del” indicates a frameshift deletion. For these searches we employed the same 

reference sequences used in the owl genome searches, detailed in Table S3. 

 
 Rh2 OpnP Opn4m CYP2J19 

Reference 
Sequence 

GenBank: 
AH007731 
Columba livia 

GenBank: 
U15762, WGS: 
AADN03007691 
Gallus gallus 

GenBank: AY882944, WGS: 
AADN04000143 Gallus gallus 

GenBank: 
XM_422553, 
WGS: 
AADN04000032 
Gallus gallus 

Aquila 
chrysaetos 
Sequence 

JRUM01011001 JRUM01006324 JRUM01004396: Pseudogene? (exon 9: 
stop) JRUM01002169 

Cathartes aura 
Sequence JMFT01083953 

JMFT01020150, 
JMFT01020151, 
JMFT01020152, 
JMFT01020153 

JMFT01012857, JMFT01012858, 
JMFT01012859 JMFT01168756 

Colius striatus 
Sequence 

JJRP01038063, 
JJRP01092220 JJRP01068983  

JJRP01099016, JJRP01099018, 
JJRP01099019: Pseudogene? (exon 9: 1-bp 
del; intron 9: splice donor mutation GT to 
TT; exon 11: stop) 

JJRP01092926 

Leptosomus 
discolor 

Sequence 

JJRK01095962, 
JJRK01095963 

JJRK01016598, 
JJRK01016599 

JJRK01001211, JJRK01001212, 
JJRK01001213: Pseudogene? (intron 10: 
splice donor mutation GT to GA) 

JJRK01096026 

Apaloderma 
vittatum 

Sequence 

JMFV01047445, 
JMFV01047446 

JMFV01046166, 
JMFV01046167 JMFV01094831 

JMFV01067118, 
JMFV01102670, 
JMFV01104326, 
JMFV01105382 

Buceros 
rhinoceros 
Sequence 

JMFK01024225 

JMFK01144445, 
JMFK01144446, 
JMFK01144447, 
JMFK01144448, 

JMFK01158949, JMFK01158950, 
JMFK01158951, JMFK01158952: 
Pseudogene? (exon 1: start codon mutation 
CTG) 

JMFK01006414, 
JMFK01073748 

Picoides 
pubescens 
Sequence 

JJRU01080411, 
JJRU01080413 JJRU01064065 JJRU01054812 JJRU01010544, 

JJRU01010545 

Merops nubicus 
Sequence JJRJ01051189 JJRJ01058175 JJRJ01007844 JJRJ01011917, 

JJRJ01033855 
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Table S10. Details of branch tests. This table gives the details of the branch tests performed to 

test for evidence of changes in selection pressure on the owl branches. “BG” indicates the 

background branches, “lnL” denotes the log likelihood of the model, “LRT” denotes the value of 

the likelihood ratio test (given by 2 times the difference in the likelihoods of the models), and 

“cf” denotes the codon frequency model used to calculate the equilibrium codon frequencies 

with “cf 1” indicating that we used the average nucleotide frequencies and “cf 2” indicating that 

we used the average nucleotide frequencies at each of the 3 codon positions. “Model” 

corresponds to the number of ω values employed among branches with one ω value assumed for 

all branches under model “0”, two ω values used under model “1”, and 3 ω values used with 

model “2”. “Tyto” and “Strix” indicate whether the value pertains to sequence in the Tyto alba or 

Strix occidentalis caurina genome assembly, respectively. For model comparisons, bold font 

indicates significant difference (p < 0.05) between models. 
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Gene Model BG ω Tyto ω Strix ω Stem Owl ω lnL Models 

compared LRT 

CYP2J19 (cf 1) 
 0 0.206    

 
-5045.714   

 1 0.173 0.719   
 
-5029.495 1 vs. 0 32.437 

 2 0.164 0.719 0.336 
 
-5027.178 2 vs. 1 4.633 

CYP2J19 (cf 2) 
 0 0.194     -5050.277   

 1 0.163 0.681    -5034.027 1 vs. 0 32.499 
 2 0.154 0.680 0.333  -5031.418 2 vs. 1 5.219 

OPN4M (cf 1) 
 0 0.214     -3345.378   

 1 0.192 0.448 0.448 0.895 -3341.951 1 vs. 0 6.854 
OPN4M (cf 2) 0 0.213     -3350.019   

 1 0.190 0.452 0.452 0.864 -3346.487 1 vs. 0 7.066 
OPNP (cf 1) 

 0 0.234     -3937.560   

 1 0.180 0.695   -3918.377 1 vs. 0 38.446 
OPNP (cf 2) 

 0 0.152     -3892.939   

 1 0.114 0.508   -3870.379 1 vs. 0 45.121 
RH2 (cf 1) 0 0.079     -3155.354   

 1 0.057 0.367    -3139.086 1 vs. 0 32.536 
 2 0.052 0.358 0.208  -3136.501 2 vs. 1 5.170 

RH2 (cf 2) 0 0.043     -3054.733   
 1 0.031 0.219    -3037.200 1 vs. 0 35.065 
 2 0.028 0.205 0.158  -3033.836 2 vs. 1 6.728 
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Table S11. Details of branch-site tests. This table provides details of the tests performed using 

branch-site models implemented in the phylogenetic analysis by maximum likelihood (PAML) 

package to detect positive selection affecting certain sites on the owl lineages. “Tyto” and “Strix” 

indicate whether the values pertain to sequence in the Tyto alba or Strix occidentalis caurina 

genome assembly, respectively. “BG” indicates the background branches, “FG” denotes the 

foreground branch, “lnL” denotes the log likelihood of the model, “LRT” denotes the value of 

the likelihood ratio test (given by 2 times the difference in the likelihoods of the models), and 

“cf” denotes the codon frequency model used to calculate the equilibrium codon frequencies 

with “cf 1” indicating that we used the average nucleotide frequencies and “cf 2” indicating that 

we used the average nucleotide frequencies at each of the 3 codon positions. “Site class” 

indicates the ω category with “0” indicating sites under purifying selection, “1” sites under 

relaxed selection, “2a” sites that are under positive selection on the foreground branch and under 

purifying selection on the background branches, and “2b” indicating positive selection on the 

foreground branch and relaxed selection on the background branches. “Proportion” indicates the 

proportion of sites in a given class. “Model” denotes either the positive selection model 

(“Positive”) or the null model (“Null”).  
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Gene Taxon Site 

class 
Proportion BG ω FG ω Model lnL LRT 

OPN4M (cf 1) 
 

Strix 0 0.778 0.047 0.047    

  1 0.184 1 1    
  2a 0.031 0.047 4.291    
  2b 0.007 1 4.291    
      Positive -3305.681  
      Null -3305.984 -0.605 
 Tyto 0 0.773 0.046 0.046    
  1 0.190 1 1    
  2a 0.030 0.046 1.660    
  2b 0.007 1 1.660    
      Positive -3306.308  
      Null -3306.325 -0.033 

OPN4M (cf 2) Strix 0 0.773 0.047 0.047    
  1 0.182 1 1    
  2a 0.036 0.047 4.051    
  2b 0.009 1 4.051    
      Positive -3310.564  
      Null -3310.887 -0.646 
 Tyto 0 0.788 0.050 0.050    
  1 0.189 1 1    
  2a 0.019 0.050 2.072    
  2b 0.004 1 2.072    
      Positive -3311.582  
      Null -3311.605 -0.047 
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4 Supplementary Figures 

 

Figure S1. Cumulative distribution of annotation edit distances of MAKER-generated 

annotations. This is a graph of the cumulative distribution of annotation edit distances (AED) of 

the annotations generated by MAKER. Included here are all of the annotations in the MAKER 

final output. We have drawn a horizontal line denoting 50% of the annotations. After quality 

filtering, the cumulative distribution appeared identical. 
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Figure S2. Histogram of the lengths of genes annotated by MAKER. This is a histogram of the 

distribution of the lengths of genes annotated by MAKER. We included all of the gene 

annotations in the MAKER final output. We grouped the values into 400 frequency bins, one of 

these including all genes greater than or equal to 150,000 nt in length. We have provided the 

mean, median, and standard deviation of the gene lengths in a text box. 
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Figure S3. Histogram of the coding DNA sequence length in genes annotated by MAKER. This 

is a histogram of the lengths of coding DNA sequences in genes annotated by MAKER. We 

included all of the gene annotations in the MAKER final output. We grouped the values into 400 

frequency bins, one of these including all coding DNA sequences greater than or equal to 10,000 

nt in length. We have provided the mean, median, and standard deviation of the lengths in a text 

box. 
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Figure S4. Histogram of the lengths of exons in genes annotated by MAKER. This is a 

histogram of the lengths of exons in genes annotated by MAKER. We included the exons from 

all of the gene annotations in the MAKER final output. We grouped the values into 400 

frequency bins, one of these including all exons greater than or equal to 1,600 nt in length. We 

have provided the mean, median, and standard deviation of the exon lengths in a text box. 
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Figure S5. Histogram of the lengths of introns in genes annotated by MAKER. This is a 

histogram of the lengths of introns in genes annotated by MAKER. We included the introns from 

all of the gene annotations in the MAKER final output. We grouped the values into 400 

frequency bins, one of these including all introns greater than or equal to 16,000 nt in length. We 

have provided the mean, median, and standard deviation of the intron lengths in a text box. 
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Figure S6. Histogram of the number of exons in genes annotated by MAKER. This is a 

histogram of the number of exons in genes annotated by MAKER. We included the exons from 

all of the gene annotations in the MAKER final output. We grouped the values into 60 frequency 

bins, one of these including all genes with greater than or equal to 60 exons. We have provided 

the mean, median, and standard deviation of the number of exons per gene in a text box. 
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